

Draft Green River Pipeline Cost Analysis

In 2020, the Utah Legislature instructed the Utah Division of Water Resources to update the estimated project costs associated with a <u>2002 Draft Green River Pipeline Cost Analysis</u> and the <u>2003 addendum</u> (Utah Code 73-10-35). The study analyzed the potential cost of importing 60,000 acre-feet of water from the Green River of the Colorado River Basin and delivering the water to the Bear River and Weber basins. Since then, inflation, facilities, and material costs have increased dramatically, making this project less likely today than when it was originally considered. The list below outlines the key takeaways from the <u>updated report</u>.

- Updated project costs, depending on alignment, range from an estimated \$732 million to \$1.455 billion.
- Unit cost for delivered raw (untreated) water range from \$615 per acre-foot delivered to the Bear River to \$1,455 per acre-foot delivered to the Weber/Provo canal diversion.
- The routes investigated range in length from 69.4 miles to 142.0 miles.
- Points of diversion would originate at Fontenelle or Flaming Gorge reservoirs.
- Delivery destinations include the Bear River below the town of Randolph, Echo and Rockport reservoirs on the Weber River, and the Weber/Provo diversion canal.

Costs in this study compare with those of the most recent Lake Powell Pipeline study (comparable length of 140 miles), which is also an estimate with a cost range of +/- 25%. As with the Lake Powell Pipeline, the cost of environmental studies and mitigation have not been included in this report.

Although this report updates the costs contained in the original "Draft Green River Pipeline Cost Analysis," the Utah Division of Water Resources recognizes that is a coarse estimate and a more detailed analysis including field visits, updated material costs, and design details would be necessary to more accurately represent the actual cost. The division did not finalize the original draft due to a host of potential challenges and obstacles.

Some of the difficulties associated with the project include:

- Importing water into the Bear River would require a possible revision of the Bear River Compact and would require approval from Utah, Idaho and Wyoming, and Congress.
- Diverting water in Wyoming for use in Utah would require obtaining water rights from the State of Wyoming. Potential alignments are located in Wyoming and would require approval.
- While Utah's current depletions from the Colorado River are well below the state's allocation under the Colorado River Compact, all future uses are currently in place and accounted for.

Utah Department of Natural Resources Water Resources

These uses include:

- Lake Powell Pipeline Development Project
- Tribal water settlements
- Modest increases to existing exports and in-basin uses
- Any proposed project that aims to export water beyond what has been outlined by Utah's State Engineer would come under heavy scrutiny from the Colorado River Basin States and their stakeholders (including Utah's).
- Currently, there is no water right associated with a potential Green River development project.
- Acquiring a water right to divert would be a challenge and creates significant water rights priority issues.
- Several endangered fish species inhabit the aquatic environment downstream of the project.

Cost Comparison of Proposed State Projects

One request the Division received for this update was for a cost comparison of the different state projects currently being investigated. The table below lists the total costs and annualized unit costs for the lowest and highest cost proposal for each project. These cost comparisons are somewhat cursory due to the differing levels of detail included in each of the cost studies. It should also be noted that any of the Green River Project proposals that deliver water into the Bear River (such as the lowest cost Green River option shown below) would incur the additional costs of the Bear River Project in order to deliver water to the Wasatch Front. If the same water were to be used for environmental needs in the Great Salt Lake, it would not.

Proposed Project	Low Total Project Cost	High Total Project Cost	Annualized Low Unit Cost Ac-ft	Annualized High Unit Cost Ac-ft
Bear River ^{†`}	\$1.5 Billion	\$2.8 Billion	\$314	\$582
Green River*	\$732 Million	\$1.499 Billion	\$615	\$1,455
Lake Powell*	\$1.184 Billion	\$1.924 Billion	\$647	\$1,051

Cost Comparison of Bear River, Green River and Lake Powell Proposals

[†] The Bear River Development used a 50-year repayment with a 4.0% rate.

* The annualized acre-feet for Lake Powell and Green River Pipeline projects were calculated with a 50 year repayment period at a 3.90% rate.

Draft **Green River Pipeline** Cost Analysis Update

Utah Division of Water Resources

February, 2021 (Subject to Revision)

Table of Contents

Executive Summary	ii
Section 1 – Introduction	1
Section 2 – Basic Design Parameters & Assumptions	2
Section 3 – Pipeline Alternatives	4
Section 4 – Cost Estimates	7
Section 5 – Areas for Further Study and Other Significant Obstacles	13
Appendix A – Pipeline Alignment Profiles	16
Appendix B – Cost Estimate Sheets	29

In 2020, the Utah Legislature instructed the Utah Division of Water Resources to update the estimated project costs associated with a draft investigation study from 2002 called the Draft Green River Pipeline Cost Analysis and the 2003 addendum. The Study analyzed the potential cost of importing 60,000 acre-feet of water from the Green River of the Colorado River Basin delivering water to the Bear River or Weber River basins. Since then, inflation, facilities, and material costs have increased dramatically. The list below outlines the key takeaways from this report:

- Updated project costs, depending on alignment, range from an estimated \$732 million to \$1.455 billion.
- Unit cost for delivered raw (untreated) water range from \$615 per acre-foot delivered to the Bear River, to \$1,455 per acre-foot delivered to the Weber/Provo canal diversion. Additional costs would be incurred to deliver finished water to potential customers.
- The routes investigated range in length from 69.4 miles to 142.0 miles.
- Points of diversion would originate at Fontenelle or Flaming Gorge reservoirs, in the state of Wyoming.
- Delivery destinations in Utah include the Bear River below the town of Randolph, Echo and Rockport reservoirs on the Weber River, and the Weber/Provo diversion canal.
- Costs in this study compare with those of the most recent Lake Powell Pipeline study (comparable length of 140 miles) which is also an estimate with a cost range of +/- 25%. As with the Lake Powell Pipeline, the costs of environmental studies and mitigation have not been included in this report.

Disclaimer: Although this report updates the costs contained in the original "Draft Green River Pipeline Cost Analysis," the Utah Division of Water Resources makes no claim as to the feasibility of such a project. The division did not finalize the original draft due to a host of potential challenges and obstacles. The feasibility of such a project is even less likely today than it was then. Some of the difficulties associated with the project include:

- Utah's Colorado River allocations are already planned for. While Utah's current depletions are well below the allocation under the Colorado River Compact, all future uses from the Colorado River are currently in place and accounted for. These uses include:
 - Lake Powell Pipeline Development Project
 - Tribal water settlements
 - o Modest increases to existing exports and in-basin uses.
- Any proposed project that aims to export water beyond what has been outlined by Utah's water agencies would come under heavy scrutiny from the Colorado River Basin States and their stakeholders (including Utah's).
- Importing water into the Bear River would require a possible revision of the Bear River Compact, which would need approval from the states of Utah, Idaho and Wyoming, and Congress.
- Currently, there is no water right associated with a potential Green River development project.
- Diverting water in the state of Wyoming for use in Utah would require water rights from the State of Wyoming.
- Potential alignments are located in the State of Wyoming and would require approval and permits from impacted jurisdictions.
- Acquiring a water right to divert would be a challenge and create significant water rights priority issues.
- Several endangered fish species inhabit the aquatic environment downstream of the project.

In 2002, the Utah Division of Water Resources prepared a draft report that looked at the cost of various alternatives to import water from the Green River drainage, a major tributary to the Colorado River, for use along the Wasatch Front. In particular, the draft investigated the feasibility of importing water from either Fontenelle Reservoir in western Wyoming or Flaming Gorge Reservoir, near the Utah Wyoming border, into the Bear River or Weber River drainage.¹ In 2003, the division issued a draft addendum adding additional alignments to the report that would deliver water to a point on the Weber River above the Weber/Provo diversion.²

Due to the many challenges and obstacles a project of this nature would have to overcome and the lack of an immediate need, the division never pursued the project beyond the initial draft cost estimates.

In 2020, a new law went into effect directing the division to update the costs contained in the 2002 draft and subsequent addendum. This report satisfies the requirements of the law.

Disclaimer: Although this report updates the costs contained in the original draft "Green River Pipeline" reports as directed by law, by issuing this update, the Utah Division of Water Resources makes no claim as to the feasibility of such a project. As noted above, the division did not finalize the original cost estimates due to a host of potential challenges and obstacles. The feasibility of such a project is even less likely today than it was then.

Pursuing a Green River development project is not currently in the State of Utah's plan for the Colorado River, nor is there any intention for it to be included. The legislature could direct the Division of Water Resources to explore the concept in more depth. While Utah's current depletions are well below the allocation under the Colorado River Compact, all future uses from the river are currently planned for. These uses include the Lake Powell Pipeline Development Project, tribal water settlements, and modest increases to existing exports and in-basin uses. Any proposed project that aims to export water beyond what has been routinely outlined by the State would come under heavy scrutiny from the Colorado River Basin States and their stakeholders.

Section 5 of this document articulates a few more difficulties associated with the project.

¹ Utah Division of Water Resources, *Draft Green River Pipeline: Cost Analysis*, Larry Anderson, Robert King, Todd Stonely, October 2002.

² Utah Division of Water Resources, *Draft Addendum to October 2002 Green River Pipeline: Cost Analysis*, October 2003.

For the sake of simplicity, the original cost analysis and the update presented in this report uses similar design parameters and assumptions as those found in a detailed study performed on another Utah project with similar characteristics, namely the Lake Powell Pipeline.³ The Lake Powell Pipeline is a project located along the Utah/Arizona border that proposes to transport water from Lake Powell 140 miles overland to the St. George area.

Although useful for comparative purposes, this report should not be construed as comparable to the study prepared for the Lake Powell Pipeline. While significant resources have been spent to investigate the proposed alignments and alternatives of the Lake Powell Pipeline, no comparable investigations have been performed for the Green River Pipeline. <u>Subsequently, this report</u> should be viewed as a preliminary and draft analysis only.

Table 1 lists basic design parameters and unit costs used in the original 1995 Lake Powell Pipeline study and in this report. For the most part, the unit costs used and other assumptions made are very similar. Pipe costs and pumping plant costs however, have increased considerably since the 2003 study. Notable differences between this study and the 2003 study include the interest rate of 3.9% (instead of 4.13%) and the design life of 50 years (instead of 40 years). Also, the level of detail and field reconnaissance contained in each pipeline reach for this report is much rougher than that for the Lake Powell Pipeline. Costs for the longer alignment in this report (142 miles, 2 pump plants) are comparable, although slightly higher than those of the Lake Powell Pipeline (140 miles, 4 pump stations).

³ Boyle Engineering Corp. & Alpha Engineering, Inc., *Lake Powell Pipeline Feasibility Study*, 1995. This study was conducted with help from and in cooperation with the Washington County Water Conservancy District and the Utah Division of Water Resources.

Basic Design F	arameters and Other Assur	nptions
Parameter	DRAFT 2002 Green River Pipeline Cost Analysis*	2020 (This Report)
Design Flow	60,000 acre-feet/yr.	60,000 acre-feet/yr.
Manning's Roughness coefficient	0.011	0.011
Base Pipe Costs: 51"	\$3.20/lf/in	\$21.50/lf/in#
Adverse Condition Costs:		
High Pressure	Accelerating cost formula for pressures above 150 psi	Modeled fit of formula used for Lake Powell Pipeline
Rock	\$0.30 to 0.80/lf/in	\$3.00 to 12.00/lf/in**
Ground Water	Not Encountered	\$3.00 to 9.00/lf/in
Slope	1.00 to 1.22 multiplier	1.00 to 1.22 multiplier
Appurtenances	1.05 multiplier	1.05 to 1.07 multiplier [†]
Right-of-Way Acquisition	100' wide corridor at \$500 to \$2,000 per acre	100' wide corridor at \$1,250 to \$5,000 per acre^
Pumping Plant (85% efficient):	\$7,750,000 to \$11,800,000	\$31,000,000 to \$62,000,000 [‡]
Hydropower Station (82% efficient)	\$4,100,000	\$5,800,000 to \$7,100,000
Contingencies	15% design & administration 10% additional contingency	15% design & administration 10% addition contingency
Interest Rate	4.13%	3.90%§
Design Life	40 years	50 years§
Energy Costs	\$0.030/kwh off-peak \$0.045/kwh on-peak \$0.035/kwh average	\$0.035/kwh off-peak∼ \$0.225/kwh on-peak∼ \$0.090/kwh average

TABLE 1 Basic Design Parameters and Other Assumptions

* Values used in the 1995 Lake Powell Pipeline Study indexed to 2002 construction prices using the ENR cost index.

[#] Pipe costs in this report use the Bureau of Reclamation's 2020 Q2 cost index which are more inclusive of associated piping costs, such as compaction and backfill materials etc.

** Lower costs per foot were used in the 2002 Green River Pipeline report because pipe reaches were not broken up into small segments, thus tending to overestimate the impacts of adverse conditions. The 2002 study costs were indexed to 2020.

[†] Multiplier of 1.07 used along I-80 corridor where greater costs are expected during construction.

^ Right of way estimates used for each segment (in the 2003 report the \$500/acre reference was omitted, the \$2000/acre was also only used in roadless areas).

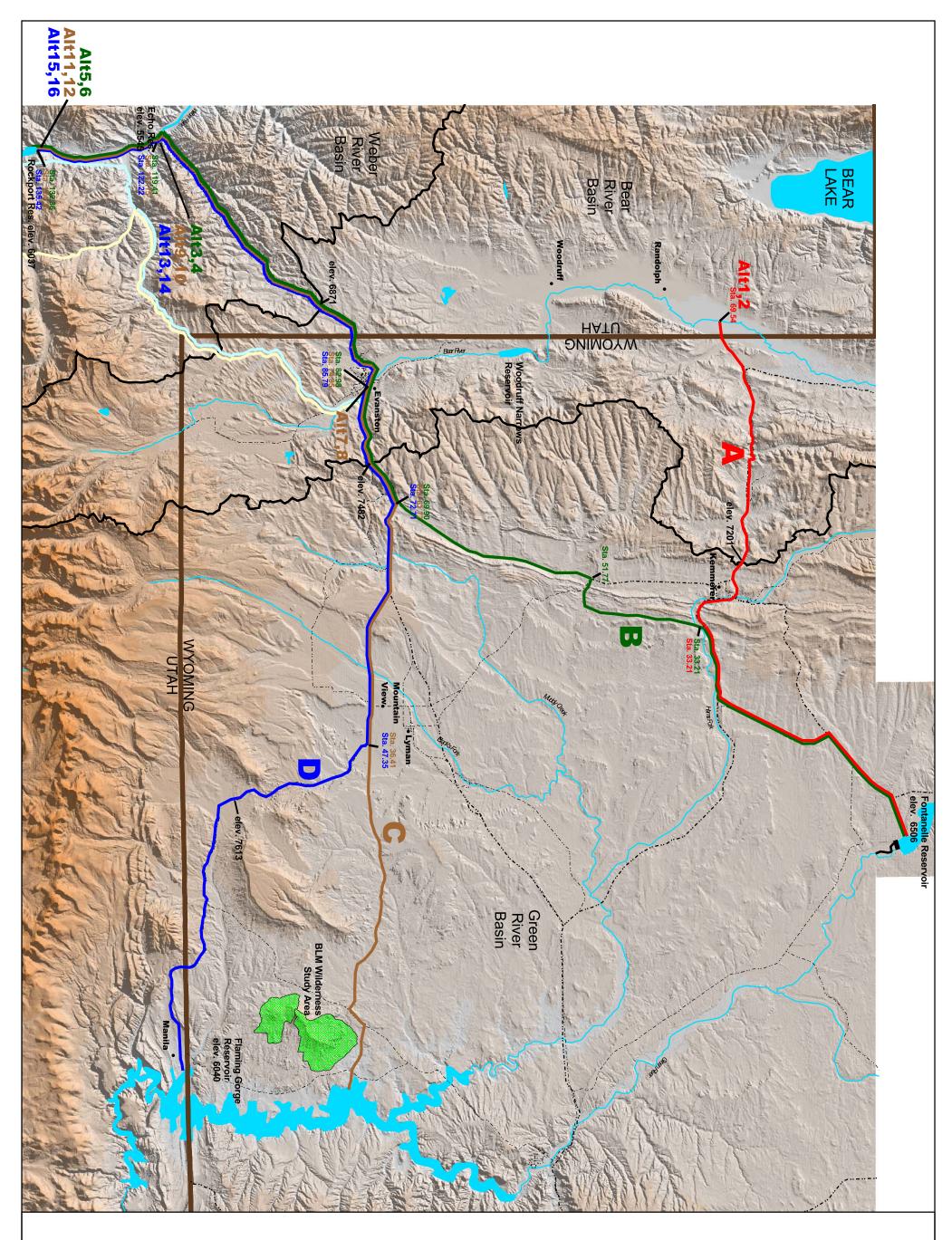
[‡] This report assumed slightly lower costs because pump lifts were lower in nearly every instance. Lower costs of these stations were indexed to 2020. Bureau of Reclamation 2020 Q2 cost index source.

[§] Economic variables used by the Division of Water Resources during the summer of 2002 are currently equal in 2020.

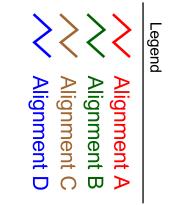
[~] Values used for generating plants are an average of the Green River Power plant and Fremont Power plant, for power sold back into the grid. Rocky Mountain Power 2020 peak and off-peak rates were used for power consumption.

Pipeline Alignments

Four alignments were selected for this preliminary analysis (see Figure 1). Two of these alignments originate high on the Green River at Fontenelle Reservoir (elev. 6506), located approximately 35 miles northeast of Kemmerer, Wyoming. The other two alignments originate lower on the Green River at Flaming Gorge Reservoir (elev. 6040), located approximately six miles east of Manila, Utah.


Both alignments from Fontenelle Reservoir follow U.S. Highway 189 to a point about three miles east of Kemmerer, where they diverge and take a different course to their ultimate destinations on the Bear and Weber rivers. Alignment A goes through Kemmerer and continues in a westerly direction until it terminates at the Bear River, near Randolph, Utah. Alignment B turns south, crosses about 14 miles of rangeland, and eventually joins U.S. Highway 89, south of Kemmerer. Alignment B follows U.S. Highway 89 to Interstate 80, then parallels it west through Evanston to Echo Reservoir, and to its eventual terminus at Rockport Lake, near Wanship.

Alignments C and D originate from separate locations on Flaming Gorge Reservoir. Alignment C begins in Wyoming at a point about 15 miles north of Manila, Utah. This alignment crosses about 36 miles of rangeland before it joins Alignment D, near Mountain View, Wyoming. From this point alignment C continues west, joins Interstate 80, and parallels it west through Evanston to Echo Reservoir, and to their eventual terminus at Rockport Lake, near Wanship. Alignment D begins in Utah at a point approximately four miles east of Manila. This alignment crosses some rangeland until it reaches a local road near Manila. This road eventually joins state route 46 to Manila. At Manila, the alignment continues west along route 46, crosses into Wyoming where it becomes state route 414, and eventually joins alignment C near Mountain View. From there this alignment follows the same course as alignment C all the way to Rockport Lake.


Project Alternatives

Two alternatives were analyzed for Alignment A, the only difference being that alternative 1 has one pump station while alternative 2 has two pump stations. Alignments B and D have four alternatives each: two that terminate lower on the Weber River at Echo Reservoir and two that terminate higher on the Weber River at Rockport Lake. Alignment C has six alternatives: two terminate at the Bear River near Evanston; two terminate at Echo Reservoir; and two terminate at Rockport Reservoir. Single pump station and dual pump station alternatives were analyzed for each pipe run (all odd numbered alternatives have a single pump station; even numbered alternatives have dual pump station.).

Table 2 summarizes the essential differences of the 16 alternatives.

Figure 1 Green River Pipeline Alignments and Alternatives

5

		Compa	irison of Alter	natives		
		Destination				r of Pump tions
Alternatives	Bear River near Evanston	Weber River at Echo Reservoir	Weber River at Rockport Lake	Weber River Above Provo Div.	1	2
1,7	Х				Х	
2,8	Х					Х
3,9,13		Х			Х	
4,10,14		Х				Х
5,11,15			Х		Х	
6,12,16			Х			Х
17,18,19,20,21,22*				Х		Х
23*				Х	Х	

TABLE 2 Comparison of Alternatives

*Alternatives 17 - 23 follow the Chalk Creek drainage rather than Echo Canyon and are discussed at the end of chapter 4.

Alternatives 1 & 2 (Fontenelle Reservoir to the Bear River, below Woodruff Narrows Reservoir) have the shortest pipeline length, 69.4 miles. Alternatives 20 (Flaming Gorge Reservoir to the Weber River, above Provo Diversion) has the longest pipeline length, 142.0 miles. All other alternatives have pipelines that range in length from 74.9 to 132.9 miles, depending upon the point of origin and destination.

A detailed cost estimate was prepared for each of the 23 alternatives (see Appendix B). Table 3 summarizes the alternatives that terminate on the Bear River. Tables 4 and 5 summarize the alternatives that terminate on the Weber River at Echo Reservoir and Rockport Lake, respectively.

Bear River Alternatives

TABLE 3 Cost Estimate Summary for Bear River Alternatives				
Alternative	Total Project Cost	Total Annualized Cost	Yearly O&M Cost*	Unit Cost†
1	\$737,902,000	\$36,931,000	\$3,168,000	\$616
2	\$734,141,000	\$36,889,000	\$3,298,000	\$615
7	\$779,828,000	\$45,585,000	\$9,903,000	\$760
8	\$732,291,000	\$43,625,000	\$10,118,000	\$727

Table 3 summarizes the costs of the four Bear River alternatives analyzed.

* Includes regular operation and maintenance costs and net energy purchase costs.

[†] Cost per acre-foot assumes full utilization of 60,000 acre-feet per year.

As shown, the unit cost of water at the point of discharge (under full use conditions) ranges from a low of \$615 to a high of \$760 per acre-foot. The \$616 per acre-foot unit cost is for Alternative 1, which is the shortest pipeline of all the alternatives and has one pump station. The unit cost for Alternative 2, which is the same as Alternative 1 with two pump stations, is \$615 per acre-foot.

While importing water into the Bear River Drainage is the cheapest of all the alternatives analyzed, it has its disadvantages. The largest disadvantage being that there is no existing infrastructure that would allow the water to be put to use along the Wasatch Front where it is most needed. The latest cost estimates for bringing Bear River water to the Wasatch Front are in the neighborhood of \$315 to \$582 per acre-foot (see table 8 at the end of section 4). In addition to this, importation of water into the Bear River would require a possible revision of the Bear River Compact, and would require not only Utah's approval, but that of Idaho and Wyoming and the Congress.

Weber River Alternatives

Six alternatives were studied that terminate on the Weber River at Echo Reservoir. Alternatives 3 & 4 follow Alignment B from Fontenelle Reservoir. Alternatives 9 & 10 follow Alignment C and Alternatives 13 & 14 follow Alignment D; all four of these alternatives originate from Flaming Gorge Reservoir. Table 4 summarizes the costs of these six alternatives.

Cost Estim	Cost Estimate Summary for Weber River at Echo Reservoir Alternatives			
Alternative	Total Project Cost	Total Annualized Cost	Yearly O&M Cost*	Unit Cost†
3	\$1,311,183,000	\$62,249,000	\$2,255,000	\$1,037
4	\$1,253,851,000	\$59,785,000	\$2,415,000	\$996
9	\$1,233,485,000	\$61,262,000	\$4,823,000	\$1,021
10	\$1,185,574,000	\$59,282,000	\$5,035,000	\$988
13	\$1,299,931,000	\$65,060,000	\$5,581,000	\$1,084
14	\$1,290,482,000	\$64,868,000	\$5,821,000	\$1,081

TABLE 4
Cost Estimate Summary for Weber River at Echo Reservoir Alternatives

* Includes regular operation and maintenance costs and net energy purchase costs.

⁺ Cost per acre-foot assumes full utilization of 60,000 acre-feet per year.

As shown, the unit cost of water at the point of discharge (under full use conditions) ranges from a low of \$988 to a high of \$1,084 per acre-foot. The \$988 per acre-foot unit cost is for Alternative 10. This alternative has two pump stations. The next lowest Weber River alternative is Alternative 4, with a unit cost at \$996 per acre-foot. This alternative also contains two pump stations. The unit cost for Alternative 9, which is the same as Alternative 10 with only one pump station, is significantly more at \$1,021 per acre-foot.

Six alternatives were also studied that terminate higher up on the Weber River at Rockport Lake. Alternatives 5 & 6 follow Alignment B from Fontenelle Reservoir. Alternatives 11 & 12 follow Alignment C from a location high up on Flaming Gorge Reservoir. Alternatives 15 & 16 follow Alignment D which originates from a location on Flaming Gorge Reservoir near Manila, Utah. Table 5 summarizes the costs of these six alternatives.

Cost Estin	Cost Estimate Summary for Weber River at Rockport Lake Alternatives			
Alternative	Total Project Cost	Total Annualized Cost	Yearly O&M Cost*	Unit Cost†
5	\$1,432,811,000	\$71,401,000	\$5,842,000	\$1,190
6	\$1,378,027,000	\$69,052,000	\$6,000,000	\$1,151
11	\$1,361,794,000	\$70,728,000	\$8,418,000	\$1,179
12	\$1,315,939,000	\$68,855,000	\$8,643,000	\$1,148
15	\$1,437,149,000	\$74,947,000	\$9,189,000	\$1,249
16	\$1,435,973,000	\$75,133,000	\$9,429,000	\$1,252

TABLE 5

Includes regular operation and maintenance costs and net energy purchase costs.

[†] Cost per acre-foot assumes full utilization of 60,000 acre-feet per year.

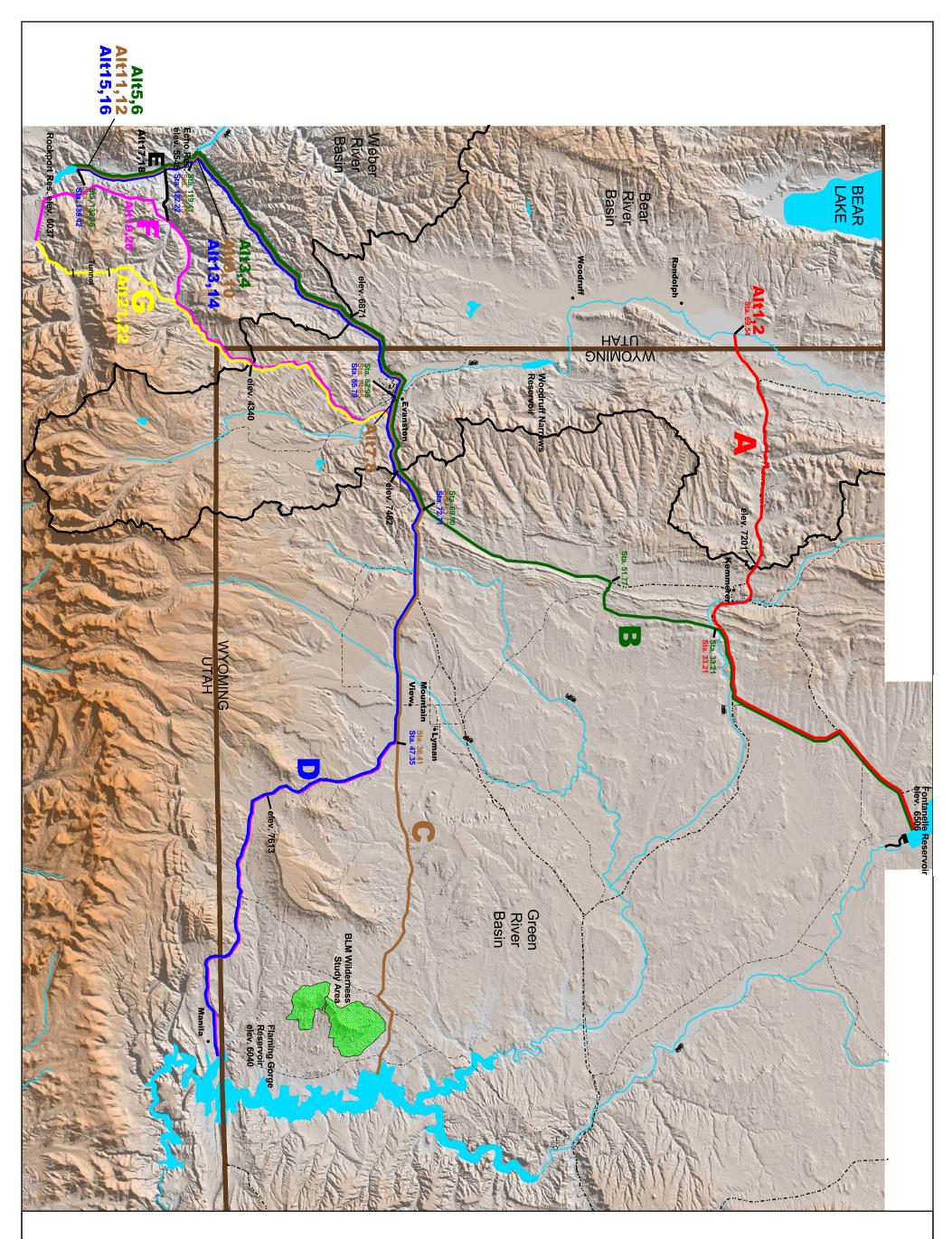
As shown, the unit cost of water at the point of discharge (under full use conditions) ranges from a low of \$1,148 to a high of \$1,252 per acre-foot. These alternatives range from \$160 to \$168 per acre-foot more than those alternatives that terminate lower on the Weber River, at Echo Reservoir. The \$1,148 per acre-foot unit cost is for Alternative 12, which follows Alignment C

and originates at Flaming Gorge. The unit cost for Alternative 11, which is the same as Alternative 12 with only one pump station, is significantly more at \$1,179 per acre-foot.

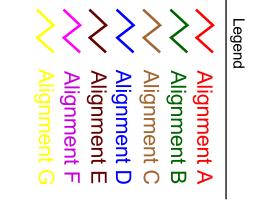
The next lowest Weber River alternative is Alternative 6, with a unit cost at \$1,151 per acre-foot. This alternative originates at Fontenelle Reservoir and also contains two pump stations.

Chalk Creek Drainage Alternatives

The original Green River Pipeline study investigated the delivery of Green River water to Echo Reservoir and/or Rockport reservoir via Echo Canyon. In 2003, however, the presence of the railroad alignment and Interstate 80 in Echo Canyon prompted the exploration for an alternative to this potentially problematic alignment. This section investigates the feasibility of routing the pipeline through the Chalk Creek Drainage instead of Echo Canyon.


The alignments investigated here followed the original C and D alignments to a point approximately 3 miles east of Evanston. From there the pipeline would run south into the Bear River watershed, cross the Bear River, ascend Bernard Hollow in a southwesterly direction, cross Coyote Creek and Sage Creek, then turn south and ascend the Yellow Creek drainage to a saddle point of elevation 7340. The Pipeline would then descend the Chalk Creek drainage of the Weber River watershed. See Figure 2.

Within the Chalk Creek drainage three alignments were considered. First, the pipeline could extend all the way down the Chalk Creek drainage and into Echo Reservoir. This option has been called Alignment E and includes two alternatives: Alternative 17 (following Alignment C and E) and Alternative 18 (following Alignment D and E). Secondly, it was discovered that if the pipeline were to turn south and extend up the South Fork of Chalk Creek, a three-mile tunnel could be employed to deliver water directly to the Weber River. This alignment would not only deliver water above Rockport Reservoir, but also above the Weber/Provo diversion canal. Thus, with relatively little additional cost, Green River water could be delivered to the entire Wasatch Front via the Provo River and/or the Weber River. This option has been called Alignment G and includes two alternatives: Alternative 21 (following Alignment C and G) and Alternative 22 (following Alignment D and G).


Finally, as an alternative to tunneling it may be possible to exit the Chalk Creek drainage and maintain a high elevation alignment above the Weber River and Rockport Reservoir, thus reaching the Weber/Provo diversion canal without a tunnel. This alignment was called Alignment F and includes two alternatives: Alternative 19 (following Alignments C and F) and Alternative 20 (following Alignments D and F). See Figure 2 for more detailed information on the location of Alternatives 17 through 22 and Alignments E, F, and G.

Assumptions

The initial investigation included a cost estimate alternative for one and two pump stations for each possible alignment. In every case the two-pump station approach was the most cost effective. It has been assumed here that the two-pump station alternative is the most cost

Figure 2 Green River Pipeline Alignments and Alternatives

10

effective approach. Single pump station alternatives have not been investigated. For tunneling costs, a dialog with Bureau of Reclamation CUP project managers resulted in the following suggested figures: \$5 million for mobilization and \$17 million per mile of tunnel. These figures could vary up or down significantly depending upon a number of factors. Consequently, an alternative to tunneling has also been included here.

Discussion of Cost Estimates

A summary of the costs associated with each of the alternatives is given in the tables that follow. Table 6 compares the cost of delivering water to Echo Reservoir: Alternatives 17 and 18 are compared with previously investigated Alternatives 10 and 14. The total project cost for Alternative 17, at just over \$1.158 billion, was about 2.3% lower than the \$1.186 billion for Alternative 10, while the total project costs of \$1.297 billion for Alternative 18, represented about a 0.5% increase compared to \$1.290 billion for Alternative 14.

Cost Estimate Summary for Delivery to Echo Reservoir					
Alternative	Alignment	Total Project Cost	Annualized Cost	Yearly O&M Cost	Unit Cost
10	С	\$1,185,574,000	\$59,282,000	\$5,035,000	\$988
17	C-E	\$1,157,866,000	\$58,516,000	\$5,537,000	\$975
14	D	\$1,290,482,000	\$64,868,000	\$5,821,000	\$1,081
18	D-E	\$1,296,662,000	\$65,815,000	\$6,485,000	\$1,097

Toble 6

Table 7 compares the cost of delivering water to Rockport Reservoir. Alternatives 19 and 21 were compared to Alternative 12. Alternatives 20 and 22 were compared to Alternative 16. Actually, while Alternatives 12 and 16 were computed to estimate the cost of delivering the water directly to Rockport Reservoir; Alternatives 19 through 22 would actually deliver water to a point above Rockport at the Weber/Provo canal diversion.

The total project cost for Alternative 19 of just under \$1.377 billion is about a 4.6% increase in cost compared to Alternative 12, while the total project costs for Alternative 21, at \$1.282 billion, represented a 2.5% decrease in total project costs. The unit cost for these two alternatives (19 & 21), however, showed an increase of 8.4% and 11% respectively. The increases in unit cost are a function of hydropower benefits. For Alternatives 12 and 16, a significant portion of the head required to lift water from Flaming Gorge Reservoir could be used for hydropower generation. For alternatives 19 through 22, however, the Weber/Provo diversion canal is 453 feet above Rockport Reservoir. This reduction in available head greatly reduces the hydropower benefit that can be expected with these alternatives.

The total project cost for Alternative 20 was just over \$1.499 billion, an increase of 4.4% compared with alternative 16. The total project costs for Alternative 22 was \$1.399 billion, a reduction of 2.6% compared to Alternative 16. For both of these alternatives though the reduced hydropower benefit resulted in an increase of the Unit Cost. The Unit Cost for Alternative 20, at \$1,455 dollars per acre-foot, was a 16% increase, while the Unit Cost for Alternative 22, at \$1,387 per acre-foot was a 10.8% increase over the \$1,252 per acre-foot for Alternative 16.

	Cost Estimate	e Summary for De	livery to Rockpo	ort Reservoir	
		Total Project	Annualized	Yearly O&M	
Alternative	Alignment	Cost	Cost	Cost	Unit Cost
12	С	\$1,315,939,000	\$68,855,000	\$8,643,000	\$1,148
19	C-F	\$1,376,819,000	\$74,678,000	\$11,680,000	\$1,245
21	C-G	\$1,282,445,000	\$76,507,000	\$17,828,000	\$1,275
16	D	\$1,435,973,000	\$75,133,000	\$9,429,000	\$1,252
20	D-F	\$1,499,129,000	\$87,323,000	\$18,729,000	\$1,455
22	D-G	\$1,398,789,000	\$83,191,000	\$19,188,000	\$1,387

Table 7 ost Estimate Summary for Delivery to Rockport Reservoir

Conclusions for Chalk Creek Alternatives

- The pump lift used in the initial Green River Pipeline D-alignment is adequate to move water over the saddle point of 7340 and into the Chalk Creek drainage. The C-Alignment however, required an additional 30-feet of lift. Consequently, it is feasible to deliver water to the Weber via Chalk Creek rather than Echo Canyon.
- The Chalk Creek drainage alignment to Echo Reservoir would be about 8 miles longer than the more direct route down Echo Canyon. However, by avoiding Interstate 80 and the railroad alignment there appears to be a slight reduction in total project costs.
- By means of a three-mile long tunnel Green River water could be moved from the Chalk Creek drainage directly to the Weber River above the Weber/Provo diversion canal making Green River water available throughout the entire Wasatch Front. Should tunneling cost prove to be prohibitively high, it may be possible to maintain a high line alignment above the Weber River and Rockport Reservoir and deliver water to the Weber/Provo Diversion Canal without a tunnel.

Delivery of water to a point on the Weber River above the Weber/Provo Diversion Canal rather than Rockport Reservoir or Echo Reservoir will greatly reduce the potential hydropower benefits associated with the earlier investigated alignments.

Cost Comparison of Proposed State Projects

One request the Division received for this 2020 update was for a cost comparison of the different state projects currently being investigated. Table 8 shown below, lists the total costs and annualized unit costs for the lowest and highest cost proposal for each project. These cost comparisons are somewhat cursory due to the differing levels of detail included in each of the cost studies. It should also be noted any of the Green River Project proposals that deliver water into the Bear River (such as the lowest cost Green River option shown in Table 8) would incur the additional costs of the Bear River Project in order to deliver water to the Wasatch Front. If the same water were to be used for environmental needs in the Great Salt Lake, it would not.

Total Bear River Project costs are generally higher partially due to the additional costs of developing storage and rights-of-way acquisition that other projects and options do not incur. Due to the high volume of water that the Bear River Project is to deliver however, unit costs are the lowest of the three projects by a considerable margin.

Cost Compa	rison of Bear Rive	TABLE 8 r, Green River a n	id Lake Powe	II Proposals
Proposed Project	Low Total Project Cost	High Total Project Cost	Annualized Low Unit Cost Ac-ft	Annualized High Unit Cost Ac-ft
Bear River [†]	\$1.5 Billion	\$2.8 Billion	\$314	\$582
Green River*	\$732 Million	\$1.499 Billion	\$615	\$1,455
Lake Powell*	\$1.184 Billion	\$1.924 Billion	\$647	\$1,051

[†] The Bear River Development used a 50 year repayment with a 4.0% rate.

* The annualized acre-feet for Lake Powell and Green River Pipeline projects were calculated with a 50 year repayment period at a 3.90% rate.

Section 5 – Areas for Further Study and Other Significant Obstacles

The report to this point could easily be considered a "quick and dirty" analysis. Generally speaking, assumptions that have been made are conservative, so as to not underestimate actual costs. Certainly, refinements can and should be made if a better idea of actual costs is desired. Areas of weakness in this report include the following:

- Design parameters remained constant and were not optimized (i.e. 60,000 acre-feet and 51 in. pipe diameter).⁴
- No field reconnaissance was performed to observe and pinpoint potential problem areas and refine individual reach costs.
- Acquisition of rights-of-way was assumed to cost \$1,250 per acre along the entire path of the pipeline (\$5,000/acre in locations where alignment did not follow a major highway).
- Pipe costs were assumed to be the same as those shown in the Lake Powell Pipeline study (1995) indexed to 2020 prices using the Bureau of Reclamation's 2020 Q2 cost index. Actual pipe construction costs may vary and could have a large impact on project costs.
- Energy costs were assumed to be the same as averaged from the Green River and Fremont power plants for power sold back into the grid and Rocky Mountain Power peak and off-peak rates for consumption. Actual costs of energy may vary and could have an impact on actual project costs.
- Reservoir pump station costs were assumed to be similar to the Bureau of Reclamation's estimates for the Lake Powell Pump Station and indexed to 2020.⁵
- None of the alternatives investigate the potential for a peaking reservoir that would maximize the economic benefits of a hydropower station. (For instance, the Lake Powell Pipeline study found that a peaking reservoir and enlarged hydropower station would significantly reduce the unit cost of the project.)
- Additional costs associated with storing, treating and delivering the project water to the end consumer was not investigated.

In addition to the weaknesses of the report listed above, pursuit of a project to import water from the Green River drainage to the Wasatch Front would encounter a host of other significant challenges and obstacles. Some of these are articulated below:

• Utah's Colorado River allocations are already planned for. While Utah's current depletions are well below the allocation under the Colorado River Compact, all future uses from the Colorado River are currently in place and accounted for. These uses include: Lake Powell Pipeline Development Project, Tribal water settlements, and modest increases to existing exports and in-basin uses.

⁴ Although not included in this report, a few test runs were made at a flow rate of 80,000 acre-feet per year, instead of 60,000 acre-feet. These test runs indicated that a unit cost of approximately \$110 per acre-foot could be obtained for Alternative 1 using the same 51 in. pipe diameter. This represents more than a 13 percent reduction in unit costs (Alternative 1 at 60,000 acre-feet has a unit cost of \$127).

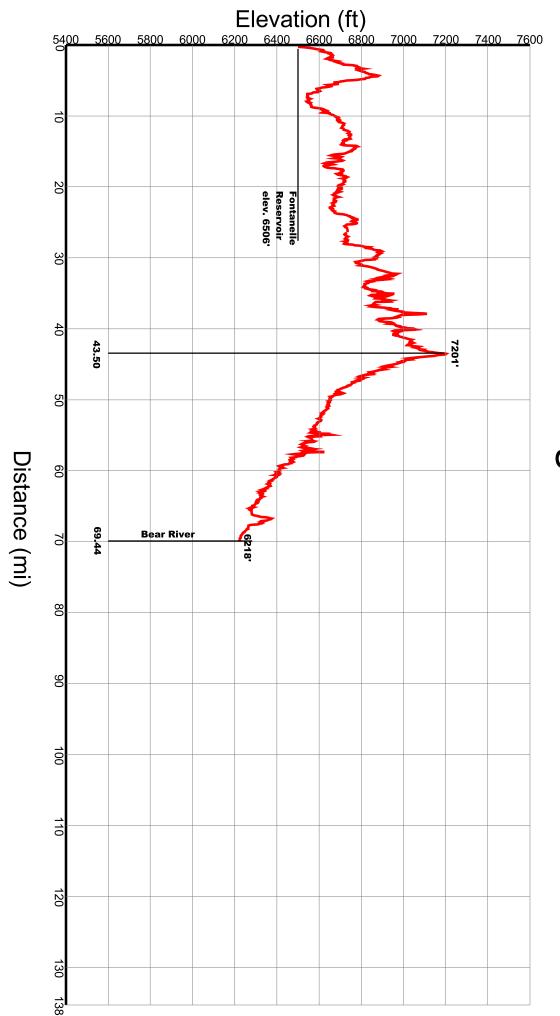
⁵ See Bureau of Reclamation, *Preliminary Design and Cost Estimate for Lone Rock Pump Station*, (Provo: 2002).

- Any proposed project that aims to export water beyond what has been outlined by Utah's water agencies would come under heavy scrutiny from the Colorado River Basin States and their stakeholders (including Utah's).
- Importing water into the Bear River would require a possible revision of the Bear River Compact, which would need approval from the states of Utah, Idaho and Wyoming, and Congress.
- Currently, there is no water right associated with a potential Green River development project.
- Diverting water in the state of Wyoming for use in Utah would require water rights from the State of Wyoming.
- Potential alignments are located in the State of Wyoming and would require approval and permits from impacted jurisdictions.
- Acquiring a water right to divert would be a challenge and create significant water rights priority issues.
- Several endangered fish species inhabit the aquatic environment downstream of the project.

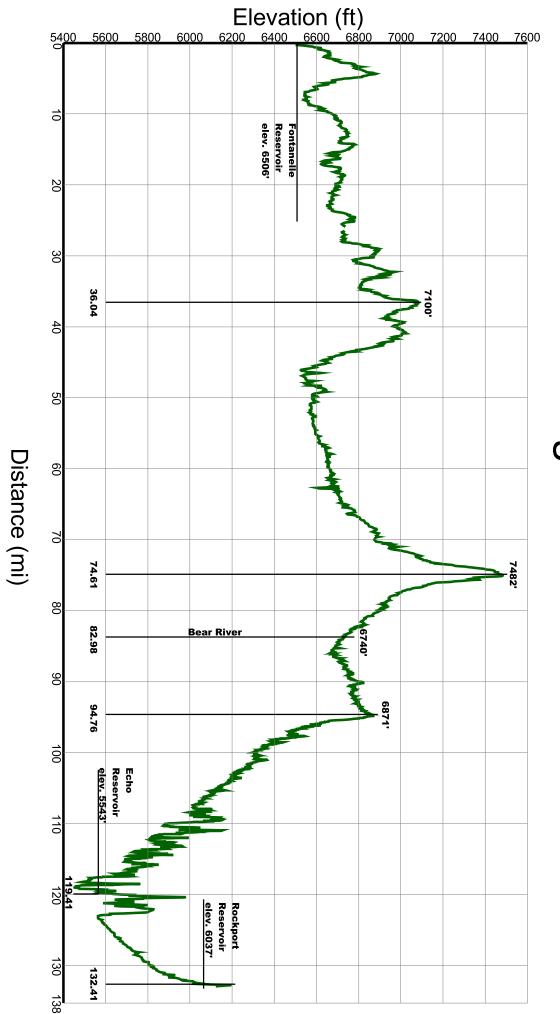
Appendix A – Pipeline Alignment Profiles

This appendix contains pipeline profiles for each of the four alignments analyzed in this report. The general description of each alignment from the report is repeated below:

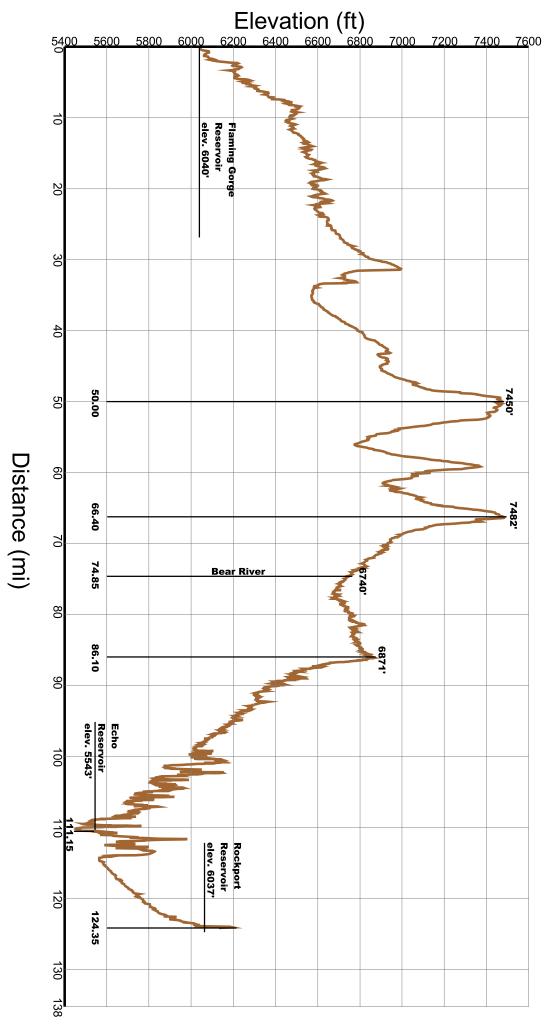
Alignments A, B, and C all originate at Fontenelle Reservoir and follow U.S. Highway 189 to the vicinity of Kemmerer, where they diverge. Alignment A goes through Kemmerer and continues in a westerly direction until it crosses the Bear River in Utah. The alignment then turns south along state route 16 until it reaches Interstate 80, where it continues to its Weber River destination, Echo Reservoir.

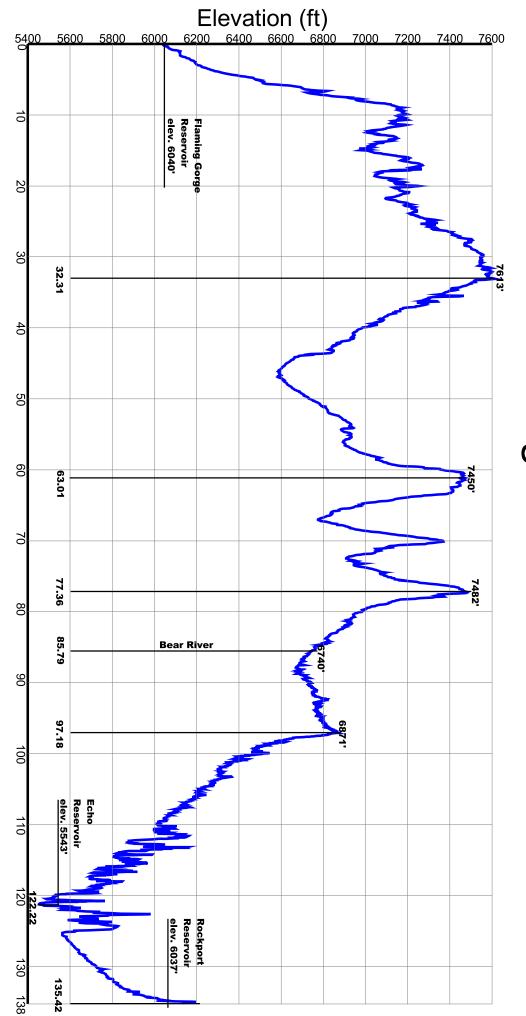

Alignments B and C are essentially the same, with only a slight difference in their path near Kemmerer. Both alignments eventually join again on U.S. Highway 89, south of Kemmerer, and continue until they join Interstate 80. They then follow Interstate 80 west through Evanston to Echo Reservoir.

Alignment D originates from Flaming Gorge Reservoir. This alignment goes west until it reaches a local road near Manila. This road eventually joins state route 46 to Manila. At Manila, the alignment continues west along route 46, crosses into Wyoming where it becomes state route 414, and eventually joins Interstate 80 near Mountain View. From there it follows Interstate 80 through Evanston to its Weber River destination, Echo Reservoir.

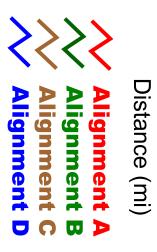

The Chalk Creek alignments follow the original C and D alignments to a point approximately 3 miles east of Evanston. From there the pipeline would run south into the Bear River watershed, cross the Bear River, ascend Bernard Hollow in a southwesterly direction, cross Coyote Creek and Sage Creek, then turn south and ascends the Yellow Creek drainage to a saddle point of elevation 7340. The Pipeline would then descend the Chalk Creek drainage of the Weber River watershed.

Within the Chalk Creek drainage three alignments were considered. First, the pipeline could extend all the way down the Chalk Creek drainage and into Echo Reservoir. This option has been called Alignment E and includes two alternatives: Alternative 17 (following Alignment C and E) and Alternative 18 (following Alignment D and E). Secondly, it was discovered that if the pipeline were to turn south and extend up the South Fork of Chalk Creek, a three-mile tunnel could be employed to deliver water directly to the Weber River. This option has been called Alignment G and includes two alternatives: Alternative 21 (following Alignment C and G) and Alternative 22 (following Alignment D and G).

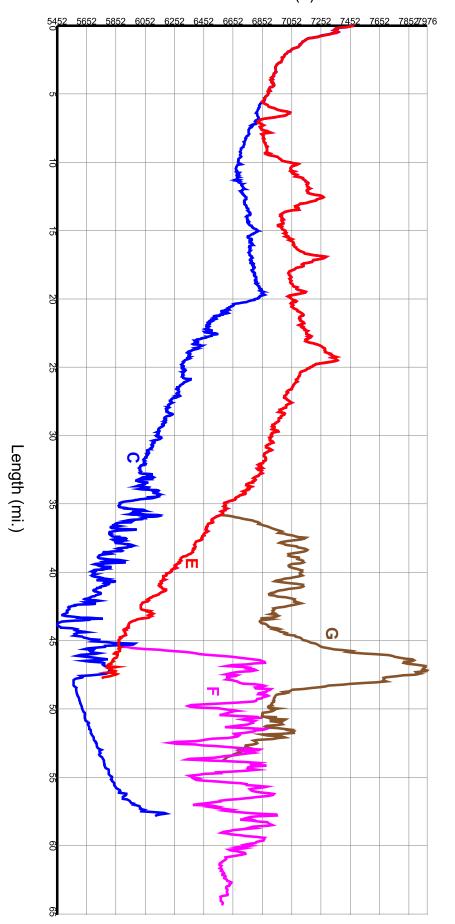

Finally, as an alternative to tunneling it may be possible to exit the Chalk Creek drainage and maintain a high elevation alignment above the Weber River and Rockport Reservoir, thus reaching the Weber/Provo diversion canal without a tunnel. This alignment was called Alignment F and includes two alternatives: Alternative 19 (following Alignments C and F) and Alternative 20 (following Alignments D and F).


Alignment A

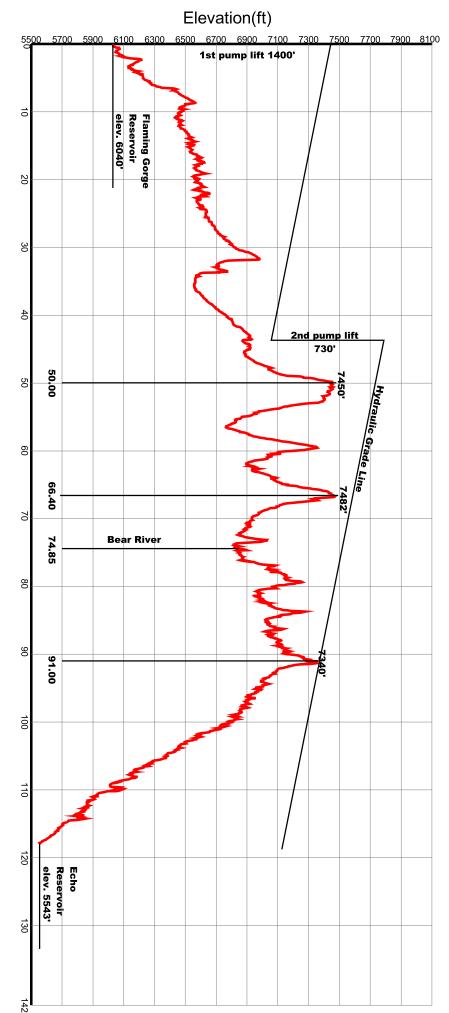
Alignment B



Alignment C

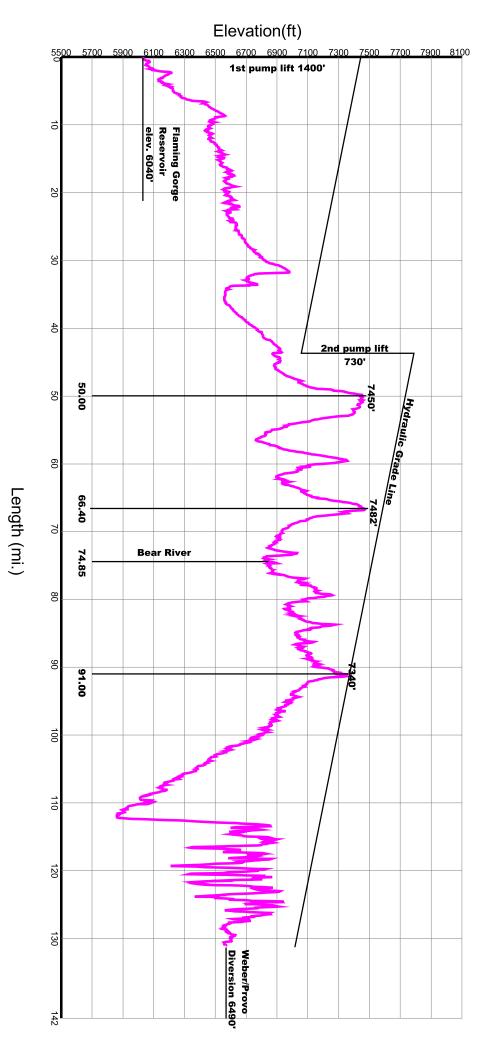

Distance (mi)

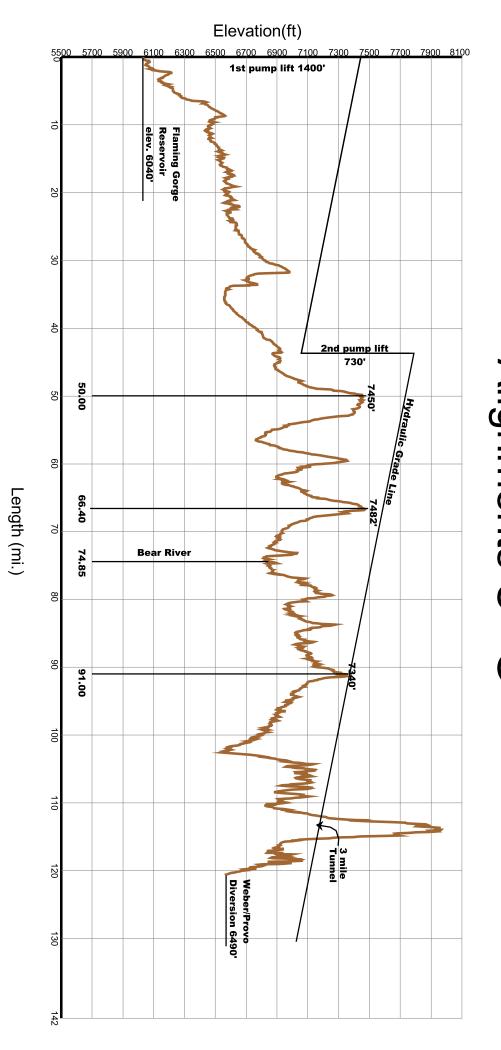
Alignment D



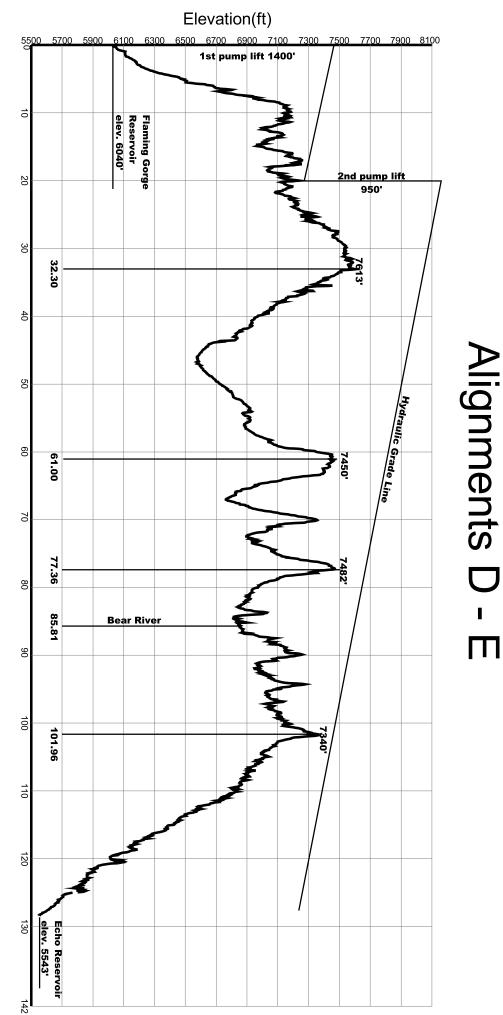
All Alignments

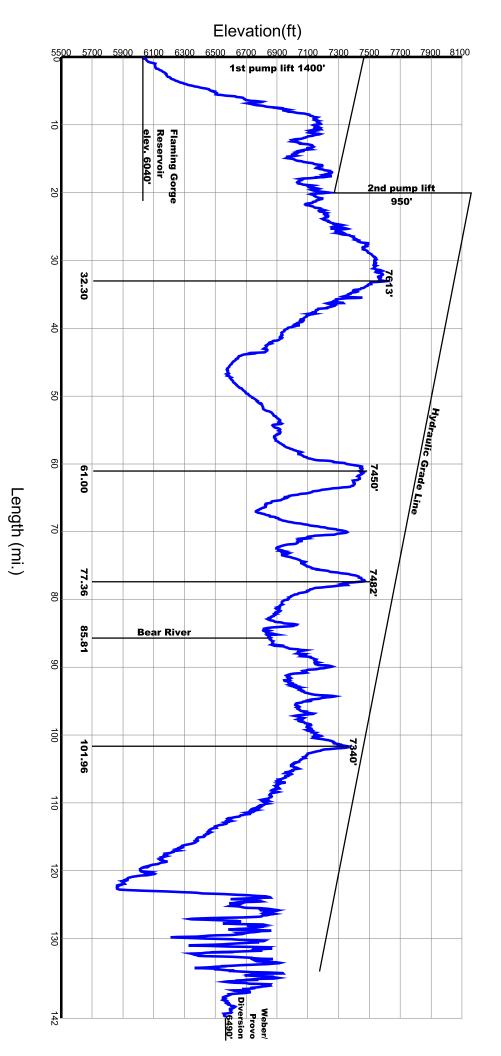
Elevation(ft)

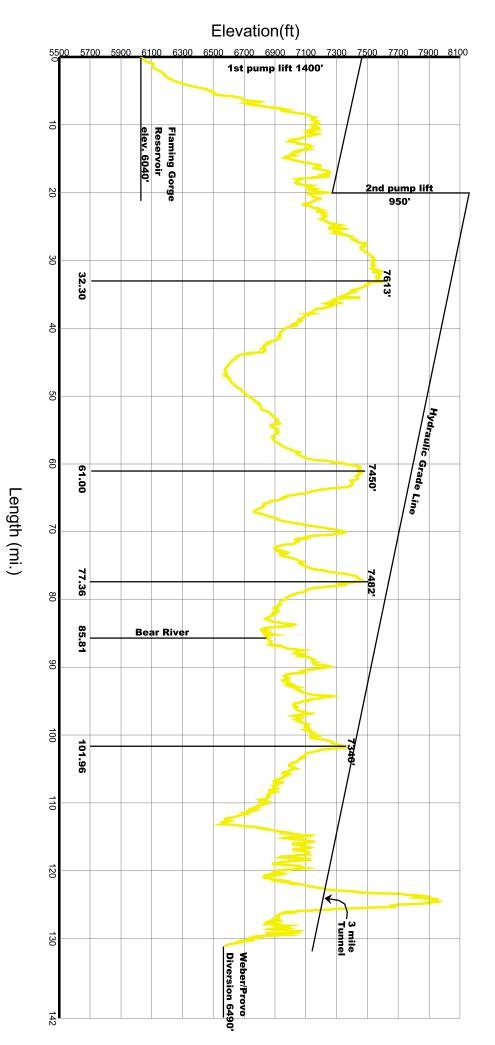

Alignments C, E, F, and G


Length (mi.)

23


Alignments C - E


Alignments C - F


Alignments C - G

Length (mi.)

Alignments D - F

Alignments D - G

Appendix B – Cost Estimate Sheets

This appendix contains detailed cost estimate sheets for each of the 23 alternatives. A description of various items on each sheet is provided below:⁶

Station (miles) Pipe Diam. (in.)	The pipeline station in miles from its point of origin. The inside diameter of the pipeline.
Velocity (ft/sec) HGL Slope	The flow velocity in the pipeline. The slope of the hydraulic grade line (head loss per unit length of pipe).
Base Pipe Cost (\$/lf/in)	The basic cost of fabricating and installing the pipe in dollars per linear foot of pipe divided by pipe diameter in inches. This includes a 10% contingency. ⁷
Ground Elev.	The ground elevation at the station indicated.
HGL Elev.	The elevation (in feet) of the hydraulic grade line at the station indicated. It generally includes the HGL elevation at control
Avg. Press. (psi)	points, including high points, pump stations, etc. The average pipe pressure between the current station and the previous station.
Add for High Press. (\$/lf/in)	The unit cost (in dollars per linear foot per inch diameter) added for high pressure.
Add for Rock (\$/lf/in)	The unit cost (in dollars per linear foot per inch diameter) added for rock or marginally rippable soils.
Add for Grndwter (\$/lf/in)	The unit cost (in dollars per linear foot per inch diameter) added for anticipated high groundwater conditions (at major stream crossings and along Alignment A in the Bear River Valley).
Slope Factor	A multiplier that increases estimated construction costs for steep slopes.
Appurt. Factor	A multiplier that increases estimated construction costs to account for valving, traffic control, mobilization, paving, dust control, reseeding, etc.
Unit Pipeline Cost (\$/lf/in)	The unit cost (in dollars per linear foot per inch diameter) for the pipeline which includes all construction costs.
R/W Cost (\$/lf)	The unit cost per linear foot of right-of-way purchased. This assumes a 100' wide easement and acquisition costs of \$1,250 to \$5,000 per acre.
Reach Cost (\$)	The total construction and right-of-way cost between the current station and the previous station.
Annualized Cost (\$)	The amortized payment amount at the interest rate and period indicated in the project data section. Annualized costs are included for the pipeline, pump station and hydropower station construction cost totals, and for energy and O&M costs.

 ⁶ Boyle Engineering Corp. & Alpha Engineering, Inc., *Lake Powell Pipeline Feasibility Study*, 1995, 49.
⁷ Ibid, 14.

Alternative 1 - Alignment A, Fontenelle Reservoir to Bear River, below Woodruff Narrows (one pump station)

PROJECT DATA					
Design Flow (Q) =	60,000	af/yr	= 82.85	cfs	
Manning's Roughness Coefficient (n) =	0.011				
Pipe Diameter (D) =	51	inches	Interest Rate =	3.90%	
Area (A) =	14.1863	ft^2	Period =	50	yrs.
Wetted Perimeter (Wp)	13.3518	ft			
Velocity (V) =	5.84049	ft/sec	Base Pipe Cost =	\$21.50	/lf/in
Energy Gradient (S) =	0.00172		Right-of-Way Cost =	\$1,250	/acre

PIPELINE

				Base				Add for		Add for			Unit			
	Pipe			Pipe			Avg.	High	Add for	Ground			Pipeline	R/W		Annualized
Station	Diam.	Velocity	HGL	Cost	Ground	HGL	Press.	Press.	Rock	water	Slope	Appurt.	Cost	Cost	Reach Cost	Costs
(miles)	(in.)	(ft/sec)	Slope	(\$/ft/in)	Elev.	Elev.	(psi)	(\$/ft/in)	(\$/ft/in)	(\$/ft/in)	Factor	Factor	(\$/ft/in)	(\$/lf)	(\$)	(\$)
		Fo	ntenelle Re	eservoir El	evation =	6506										
		For	tenelle Pu	mp Statior	ı, lift (ft) =	1150					Right	-of-Way V	Vidth (ft) =	100		
0.00	51	5.84	0.001724	21.50	6506	7656	498	5.23			1.00	1.05	28.06	2.87	0	
10.00	51	5.84	0.001724	21.50	6703	7565	373	2.96			1.00	1.05	25.69	2.87	69,319,688	
20.00	51	5.84	0.001724	21.50	6715	7474	329	2.25			1.00	1.05	24.94	2.87	67,296,608	
30.00	51	5.84	0.001724	21.50	6868	7383	223	0.75			1.00	1.05	23.36	2.87	63,066,732	
33.21	51	5.84	0.001724	21.50	6848	7354	219	0.70			1.00	1.05	23.31	2.87	20,198,093	
36.79	51	5.84	0.001724	21.50	6860	7321	200	0.46	12.00		1.00	1.05	35.66	2.87	34,428,737	
37.90	51	5.84	0.001724	21.50	7018	7311	127	0.00		6.00	1.22	1.05	35.23	2.87	10,546,346	
39.43	51	5.84	0.001724	21.50	7058	7297	104	0.00		6.00	1.10	1.05	31.76	2.87	13,109,281	
43.50	51	5.84	0.001724	21.50	7201	7260	26	0.00	3.00		1.22	1.05	31.38	2.87	34,458,125	
50.00	51	5.84	0.001724	21.50	6658	7201	235	0.91	12.00		1.00	1.05	36.13	2.87	63,336,210	
60.00	51	5.84	0.001724	21.50	6368	7110	321	2.13	12.00		1.00	1.05	37.42	2.87	100,903,522	
67.79	51	5.84	0.001724	21.50	6235	7039	348	2.55	3.00		1.00	1.05	28.41	2.87	59,706,299	
69.44	51	5.84	0.001724	21.50	6218	7024	349	2.57	3.00	6.00	1.00	1.05	34.72	2.87	15,451,950	
		F	lydropower	Station, h	ead (ft) =	806							1 River C	Crossing	1,500,000	

Total Cost of Pipeline = 553,321,591 25,317,591

PUMP STATION

		Off	On						Annualized
	Avg.	Peak	Peak	Flow	Total Lift		Power	Cost	Costs
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)	(\$)	(\$)
Energy Cost	0.012	0.035	0.225	82.85	1150	0.85	9,484		7,532,401
Capital Costs								31,000,000	1,418,425
O&M Costs									310,000

Total Cost of Pump Station(s) = 31,000,000 9,260,826

HYDROPOWER STATION

		Off	On							Annualized
	Avg.	Peak	Peak	Flow	Head		Power		Cost	Costs
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		(\$)	(\$)
Energy Cost	0.090	0.035	0.225	82.85	806	0.82	4,632			-4,734,237
Capital Costs									6,000,000	274,534
O&M Costs										60,000
								Total Cost of Hydrostation =	6,000,000	-4,399,703

PROJECT SUMMARY

		Annualized
	Cost	Costs
Item	(\$)	(\$)
Total Construction Cost	590,321,591	
15% Design & Administration	88,548,239	4,051,583
10% Contingency	59,032,159	2,701,055
TOTAL PROJECT COS1	737,901,988	36,931,352

UNIT WATER COST, FULL USE (\$/af) 616 YEARLY OPERATING COST (Energy+0&M) 3,168,164

Alternative 2 - Alignment A, Fontenelle Reservoir to Bear River, below Woodruff Narrows (two pump stations)

PROJECT DATA

Design Flow (Q) =	60,000	af/yr	= 82.85	cfs	
Manning's Roughness Coefficient (n) =	0.011				
Pipe Diameter (D) =	51	inche	s Interest Rate =	3.90%	
Area (A) =	14.1863	ft^2	Period =	50	yrs.
Wetted Perimeter (Wp)	13.3518	ft			
Velocity (V) =	5.84049	ft/sec	Base Pipe Cost =	\$21.50	/lf/in
Energy Gradient (S) =	0.00172		Right-of-Way Cost =	\$1,250	/acre

PIPELINE

	Pipe			Base Pipe			Avg.	Add for High	Add for	Add for Ground			Unit Pipeline	R/W		Annualized
Station	Diam.	Velocity	HGL	Cost	Ground	HGL	Press.	Press.	Rock	water	Slope	Appurt.	Cost	Cost	Reach Cost	Costs
(miles)	(in.)	(ft/sec)	Slope	(\$/ft/in)	Elev.	Elev.	(psi)	(\$/ft/in)	(\$/ft/in)	(\$/ft/in)	Factor	Factor	(\$/ft/in)	(\$/lf)	(\$)	(\$)
		Fo	ontenelle Re	eservoir El	evation =	6506										
		Fo	ntenelle Pu	mp Statior	ı, lift (ft) =	550					Right	t-of-Way V	Vidth (ft) =	100		
0.00	51	5.84	0.001724	21.50	6506	7056	238	0.95			1.00	1.05	23.57	2.87	0	
10.00	51	5.84	0.001724	21.50	6703	6965	114	0.00			1.00	1.05	22.58	2.87	60,941,475	
20.00	51	5.84	0.001724	21.50	6715	6874	69	0.00			1.00	1.05	22.58	2.87	60,941,475	
26.00	51	5.84	0.001724	21.50	6770	6819	21	0.00			1.00	1.05	22.58	2.87	36,564,885	
			Second Pu	mp Statior	n, lift (ft) =	600										
26.00	51	5.84	0.001724	21.50	6770	7419	281	1.54			1.00	1.05	24.19	2.87	0	
30.00	51	5.84	0.001724	21.50	6868	7383	223	0.75			1.00	1.05	23.36	2.87	25,226,693	
33.21	51	5.84	0.001724	21.50	6848	7354	219	0.70			1.00	1.05	23.31	2.87	20,198,093	
36.79		5.84	0.001724	21.50	6860	7321	200	0.46	12.00		1.00	1.05	35.66	2.87	34,428,737	
37.90	51	5.84	0.001724	21.50	7018	7311	127	0.00		6.00	1.22	1.05	35.23	2.87	10,546,346	
39.43		5.84	0.001724	21.50	7058	7297	104	0.00		6.00	1.10	1.05	31.76	2.87	13,109,281	
43.50	51	5.84	0.001724	21.50	7201	7260	26	0.00	3.00		1.22	1.05	31.38	2.87	34,458,125	
50.00		5.84	0.001724	21.50	6658	7201	235	0.91	12.00		1.00	1.05	36.13	2.87	63,336,210	
60.00	51	5.84	0.001724	21.50	6368	7110	321	2.13	12.00		1.00	1.05	37.42	2.87	100,903,522	
67.79		5.84	0.001724	21.50	6235	7039	348	2.55	3.00		1.00	1.05	28.41	2.87	59,706,299	
69.44	51		0.001724	21.50	6218	7024	349	2.57	3.00	6.00	1.00	1.05	34.72	2.87	15,451,950	
		ŀ	Hydropower	r Station, h	ead (ft) =	806							1 River C	Crossing	1,500,000	

Total Cost of Pipeline = 537,313,091 24,585,112

PUMP STATION(S)

		Off	On							Annualized
	Avg.	Peak	Peak	Flow	Total Lift		Power		Cost	Costs
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		(\$)	(\$)
Energy Cost	0.012	0.035	0.225	82.85	1150	0.85	9,484			7,532,401
Capital Costs									44,000,000	2,013,249
O&M Costs										440,000
1								Total Cost of Pump Station(s) =	44,000,000	9,985,650

HYDROPOWER STATION

		Off	On							Annualized
	Avg.	Peak	Peak	Flow	Head		Power		Cost	Costs
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		(\$)	(\$)
Energy Cost	0.090	0.035	0.225	82.85	806	0.82	4,632			-4,734,237
Capital Costs									6,000,000	274,534
O&M Costs										60,000
								Total Cost of Unducatedian -	C 000 000	4 200 702

Total Cost of Hydrostation = 6,000,000 -4,399,703

PROJECT SUMMARY		Annualized
	Cost	Costs
Item	(\$)	(\$)
Total Construction Cost	587,313,091	
15% Design & Administration	88,096,964	4,030,934
10% Contingency	58,731,309	2,687,289
TOTAL PROJECT COST	734,141,364	36,889,282
UNIT WATER COST, FULL USE (\$/af)		615
YEARLY OPERATING COST (Energy+O&M)		3,298,164

Alternative 3 - Alignment B, Fontenelle Reservoir to Weber River, Echo Reservoir (one pump station)

PROJECT DATA						
Design Flow (Q) =	60,000	af/yr	=	82.85	cfs	
Manning's Roughness Coefficient (n) =	0.011					
Pipe Diameter (D) =	51	inche	s Interest	Rate =	3.90%	
Area (A) =	14.1863	ft^2	Pe	eriod =	50	yrs.
Wetted Perimeter (Wp)	13.3518	ft				
Velocity (V) =	5.84049	ft/sec	Base Pipe	Cost =	\$21.50	/lf/in
Energy Gradient (S) =	0.00172		Right-of-Way	Cost =	\$1,250	/acre

PIPELINE

				Base				Add for		Add for			Unit			
	Pipe			Pipe			Avg.	High	Add for	Ground			Pipeline	R/W		Annualized
Station	Diam.	Velocity	HGL	Cost	Ground	HGL	Press.	Press.	Rock	water	Slope	Appurt.	Cost	Cost	Reach Cost	Costs
(miles)	(in.)	(ft/sec)	Slope	(\$/ft/in)	Elev.	Elev.	(psi)	(\$/ft/in)	(\$/ft/in)	(\$/ft/in)	Factor	Factor	(\$/ft/in)	(\$/lf)	(\$)	(\$)
		Fo	ntenelle Re	eservoir El	evation =	6506										
		Fon	tenelle Pui	mp Station	ı, lift (ft) =	1700					Right	-of-Way V	/idth (ft) =	100		
0.00	51	5.84	0.001724	21.50	6506	8206	737	10.63			1.00	1.05	33.74	2.87	0	
10.00	51	5.84	0.001724	21.50	6688	8115	618	7.77			1.00	1.05	30.74	2.87	82,918,400	
20.00	51	5.84	0.001724	21.50	6650	8024	595	7.26			1.00	1.05	30.20	2.87	81,461,969	
30.00		5.84	0.001724	21.50	6868	7933	461	4.52			1.00	1.05	27.32	2.87	73,716,745	
33.21	51	5.84	0.001724	21.50	6848	7904	457	4.44			1.00	1.05	27.24	2.87	23,595,147	
34.08	51	5.84	0.001724	21.50	6796	7896	477	4.80		9.00	1.00	1.05	37.07	11.48	8,737,292	
36.04	51	5.84	0.001724	21.50	7100	7878	337	2.38			1.00	1.05	25.07	11.48	13,350,259	
40.00	51	5.84	0.001724	21.50	7000	7842	365	2.82	3.00		1.00	1.05	28.69	11.48	30,829,082	
48.38	51	5.84	0.001724	21.50	6630	7766	492	5.11	3.00		1.00	1.05	31.09	11.48	70,654,834	
50.00	51	5.84	0.001724	21.50	6596	7751	500	5.27			1.00	1.05	28.11	2.87	12,286,127	
60.00	51	5.84	0.001724	21.50	6655	7660	435	4.04			1.00	1.05	26.81	2.87	72,358,003	
69.90	51	5.84	0.001724	21.50	6870	7570	303	1.86			1.00	1.05	24.53	2.87	65,535,361	
74.61	51	5.84	0.001724	21.50	7482	7527	19	0.00			1.20	1.07	27.61	2.87	35,084,296	
77.18	51	5.84	0.001724	21.50	6950	7503	240	0.97	9.00		1.10	1.07	37.04	2.87	25,672,005	
80.00	51	5.84	0.001724	21.50	6875	7478	261	1.26			1.00	1.07	24.35	2.87	18,534,251	
82.98	51	5.84	0.001724	21.50	6740	7451	308	1.93		6.00	1.00	1.07	31.49	2.87	25,314,022	
85.14	51	5.84	0.001724	21.50	6670	7431	330	2.26		9.00	1.00	1.07	35.05	2.87	20,422,096	
90.00	51	5.84	0.001724	21.50	6800	7387	254	1.16			1.00	1.07	24.25	2.87	31,808,856	
94.76	51	5.84	0.001724	21.50	6871	7343	205	0.52			1.00	1.07	23.56	2.87	30,272,075	
95.49	51	5.84	0.001724	21.50	6630	7337	306	1.90	9.00		1.00	1.07	34.67	2.87	6,826,817	
100.00	51	5.84	0.001724	21.50	6280	7296	440	4.12	9.00		1.00	1.07	37.05	2.87	45,060,462	
110.00	51	5.84	0.001724	21.50	6000	7205	522	5.70	9.00		1.10	1.07	42.61	2.87	114,890,502	
119.41	51	5.84	0.001724	21.50	5543	7119	683	9.29	9.00		1.10	1.07	46.83	2.87	118,817,645	
		Н	ydropower	Station, h	ead (ft) =	1576							2 River Cr	ossings	3,000,000	

Total Cost of Pipeline = 1,011,146,246 46,265,658

PUMP STATION

	Avg.	Off Peak	On Peak	Flow	Total Lift		Power				Annualized Costs
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	(\$)
Energy Cost	0.012	0.035	0.225	82.85	1700	0.85	14,020				11,134,854
Capital Costs									31,00	00,000	1,418,425
O&M Costs											310,000
								Total Cost of Pump Station(s) =	31,00	00,000	12,863,279

HYDROPOWER STATION

	_	Off	On								Annualized
	Avg.	Peak	Peak	Flow	Head		Power				Costs
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	(\$)
Energy Cost	0.090	0.035	0.225	82.85	1576	0.82	9,059				-9,258,352
Capital Costs									6,80	00,000	311,138
O&M Costs											68,000
								Total Cost of Hydrostation =	6,80	00,000	-8,879,214

			Annualized
			Costs
Item	Cost	(\$)	(\$)
Total Construction Cost	1,048,9	946,246	
15% Design & Administration	157,3	341,937	7,199,283
10% Contingency	104,8	394,625	4,799,522
TOTAL PROJECT COST	1,311,1	182,807	62,248,528
UNIT WATER COST, FULL USE (\$/af)			1,037
YEARLY OPERATING COST (Energy+O&M)			2,254,501

Alternative 4 - Alignment B, Fontenelle Reservoir to Weber River, Echo Reservoir (two pump stations)

PROJECT DATA						
Design Flow (Q) =	60,000	af/yr	=	82.85	cfs	
Manning's Roughness Coefficient (n) =	0.011					
Pipe Diameter (D) =	51	inche	s Interest I	Rate =	3.90%	
Area (A) =	14.1863	ft^2	Pe	eriod =	50	yrs.
Wetted Perimeter (Wp)	13.3518	ft				
Velocity (V) =	5.84049	ft/sec	Base Pipe	Cost =	\$21.50	/lf/in
Energy Gradient (S) =	0.00172		Right-of-Way	Cost =	\$1,250	/acre

PIPELINE

				Base				Add for		Add for			Unit			
	Pipe			Pipe			Avg.	High	Add for	Ground			Pipeline	R/W		Annualized
Station	Diam.	Velocity	HGL	Cost	Ground	HGL	Press.	Press.	Rock	water	Slope	Appurt.	Cost	Cost	Reach Cost	Costs
(miles)	(in.)	(ft/sec)	Slope	(\$/ft/in)	Elev.	Elev.	(psi)	(\$/ft/in)	(\$/ft/in)	(\$/ft/in)	Factor	Factor	(\$/ft/in)	(\$/lf)	(\$)	(\$)
		Fo	ntenelle Re	eservoir El	evation =	6506										
		Fon	tenelle Pui	mp Station	i, lift (ft) =	700					Right	t-of-Way V	Vidth (ft) =	100		
0.00	51	5.84	0.001724	21.50	6506	7206	303	1.86			1.00	1.05	24.53	2.87	0	
10.00	51		0.001724	21.50		7115	185	0.28			1.00	1.05	22.87	2.87	61,736,048	
20.00	51		0.001724	21.50	6650	7024	162	0.01			1.00	1.05	22.59	2.87	60,983,283	
30.00	51		0.001724	21.50	6868	6933	28	0.00			1.00	1.05	22.58	2.87	60,941,475	
33.21	51		0.001724	21.50		6904	24	0.00			1.00	1.05	22.58	2.87	19,562,214	
34.08	51		0.001724	21.50		6896	43	0.00			1.00	1.05	22.58	11.48	5,341,461	
			Second Pur	mp Station	i, lift (ft) =	1000										
34.08	51		0.001724	21.50		7896	477	4.80		9.00	1.00	1.05	37.07	11.48	0	
36.04	51		0.001724	21.50		7878	337	2.38			1.00	1.05	25.07	11.48	13,350,259	
40.00	51		0.001724	21.50	7000	7842	365	2.82	3.00		1.00	1.05	28.69	11.48	30,829,082	
48.38	51	5.84	0.001724	21.50	6630	7766	492	5.11	3.00		1.00	1.05	31.09	11.48	70,654,834	
50.00	51		0.001724	21.50	6596	7751	500	5.27			1.00	1.05	28.11	2.87	12,286,127	
60.00	51	5.84	0.001724	21.50	6655	7660	435	4.04			1.00	1.05	26.81	2.87	72,358,003	
69.90	51	5.84	0.001724	21.50	6870	7570	303	1.86			1.00	1.05	24.53	2.87	65,535,361	
74.61	51	5.84	0.001724	21.50	7482	7527	19	0.00			1.20	1.07	27.61	2.87	35,084,296	
77.18	51	5.84	0.001724	21.50	6950	7503	240	0.97	9.00		1.10	1.07	37.04	2.87	25,672,005	
80.00	51	5.84	0.001724	21.50	6875	7478	261	1.26			1.00	1.07	24.35	2.87	18,534,251	
82.98	51		0.001724	21.50	6740	7451	308	1.93		6.00	1.00	1.07	31.49	2.87	25,314,022	
85.14	51	5.84	0.001724	21.50	6670	7431	330	2.26		9.00	1.00	1.07	35.05	2.87	20,422,096	
90.00	51		0.001724	21.50		7387	254	1.16			1.00	1.07	24.25	2.87	31,808,856	
94.76	51	5.84	0.001724	21.50	6871	7343	205	0.52			1.00	1.07	23.56	2.87	30,272,075	
95.49	51	5.84	0.001724	21.50	6630	7337	306	1.90	9.00		1.00	1.07	34.67	2.87	6,826,817	
100.00	51		0.001724	21.50	6280	7296	440	4.12	9.00		1.00	1.07	37.05	2.87	45,060,462	
110.00	51	5.84	0.001724	21.50	6000	7205	522	5.70	9.00		1.10	1.07	42.61	2.87	114,890,502	
119.41	51	5.84	0.001724	21.50	5543	7119	683	9.29	9.00		1.10	1.07	46.83	2.87	118,817,645	
		Н	ydropower	Station, h	ead (ft) =	1576							2 River Cr	rossings	3,000,000	
												Tatal	Cost of Pi		949 281 174	40 40 4 004

Total Cost of Pipeline = 949,281,174 43,434,981

PUMP STATION(S)

		Off	On								Annualized
	Avg.	Peak	Peak	Flow	Total Lift		Power				Costs
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	(\$)
Energy Cost	0.012	0.035	0.225	82.85	1700	0.85	14,020				11,134,854
Capital Costs									47,00	0,000	2,150,516
O&M Costs											470,000
								Total Cost of Pump Station(s) =	47,00	0,000	13,755,369

HYDROPOWER STATION

		Off	On								Annualized
	Avg.	Peak	Peak	Flow	Head		Power				Costs
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	(\$)
Energy Cost	0.090	0.035	0.225	82.85	1576	0.82	9,059				-9,258,352
Capital Costs									6,80	0,000	311,138
O&M Costs											68,000
			,					T () O (()) (()			0.070.044

Total Cost of Hydrostation = 6,800,000 -8,879,214

PROJECT SUMMARY

		1	Costs
Item	Cost ((\$)	(\$)
Total Construction Cost	1,003,081,1	74	
15% Design & Administration	150,462,1	76	6,884,495
10% Contingency	100,308,1	17	4,589,663
TOTAL PROJECT COST	1,253,851,4	68	59,785,295
UNIT WATER COST, FULL USE (\$/af)			996
YEARLY OPERATING COST (Energy+O&M)			2,414,501

Annualized

Alternative 5 - Alignment B, Fontenelle Reservoir to Weber River, Rockport Lake (one pump station)

PROJECT DATA

Design Flow (Q) =	60,000	af/yr	= 82.85	cfs	
Manning's Roughness Coefficient (n) =	0.011				
Pipe Diameter (D) =	51	inches	Interest Rate =	3.90%	
Area (A) =	14.1863	ft^2	Period =	50	yrs.
Wetted Perimeter (Wp)	13.3518	ft			
Velocity (V) =	5.84049	ft/sec	Base Pipe Cost =	\$21.50	/lf/in
Energy Gradient (S) =	0.00172		Right-of-Way Cost =	\$1,250	/acre

PIPELINE

	Pipe			Base Pipe			Avg.	Add for High	Add for	Add for Ground			Unit Pipeline	R/W			-
Station	Diam.	Velocity	HGL	Cost	Ground	HGL	Press.	Press.	Rock	water	Slope	Appurt.	Cost	Cost	Reach Cost	Annuali	ized
(miles)	(in.)	(ft/sec)	Slope	(\$/ft/in)	Elev.	Elev.	(psi)	(\$/ft/in)	(\$/ft/in)	(\$/ft/in)	Factor	Factor	(\$/ft/in)	(\$/lf)	(\$)	Costs	(\$)
		Fo	ntenelle Re	eservoir El	evation =	6506											
		For	tenelle Pur	mp Station	, lift (ft) =	1700					Right	t-of-Way V	Vidth (ft) =	100			
0.00	51	5.84	0.001724	21.50	6506	8206	737	10.63			1.00	1.05	33.74	2.87	0		
10.00	51	5.84	0.001724	21.50	6688	8115	618	7.77			1.00	1.05	30.74	2.87	82,918,400		
20.00	51	5.84	0.001724	21.50	6650	8024	595	7.26			1.00	1.05	30.20	2.87	81,461,969		
30.00	51	5.84	0.001724	21.50	6868	7933	461	4.52			1.00	1.05	27.32	2.87	73,716,745		
33.21	51	5.84	0.001724	21.50	6848	7904	457	4.44			1.00	1.05	27.24	2.87	23,595,147		
34.08	51	5.84	0.001724	21.50	6796	7896	477	4.80		6.00	1.00	1.05	33.92	11.48	7,999,330		
36.04	51	5.84	0.001724	21.50	7100	7878	337	2.38			1.00	1.05	25.07	11.48	13,350,259		
40.00	51	5.84	0.001724	21.50	7000	7842	365	2.82	3.00		1.00	1.05	28.69	11.48	30,829,082		
48.38	51	5.84	0.001724	21.50	6630	7766	492	5.11	3.00		1.00	1.05	31.09	11.48	70,654,834		
50.00	51	5.84	0.001724	21.50	6596	7751	500	5.27			1.00	1.05	28.11	2.87	12,286,127		
60.00	51	5.84	0.001724	21.50	6655	7660	435	4.04			1.00	1.05	26.81	2.87	72,358,003		
69.90	51	5.84	0.001724	21.50	6870	7570	303	1.86			1.00	1.05	24.53	2.87	65,535,361		
74.61	51	5.84	0.001724	21.50	7482	7527	19	0.00			1.20	1.07	27.61	2.87	35,084,296		
77.18	51	5.84	0.001724	21.50	6950	7503	240	0.97	9.00		1.10	1.07	37.04	2.87	25,672,005		
80.00	51	5.84	0.001724	21.50	6875	7478	261	1.26			1.00	1.07	24.35	2.87	18,534,251		
82.98	51	5.84	0.001724	21.50	6740	7451	308	1.93		6.00	1.00	1.07	31.49	2.87	25,314,022		
85.14	51	5.84	0.001724	21.50	6670	7431	330	2.26		9.00	1.00	1.07	35.05	2.87	20,422,096		
90.00	51	5.84	0.001724	21.50	6800	7387	254	1.16			1.00	1.07	24.25	2.87	31,808,856		
94.76	51	5.84	0.001724	21.50	6871	7343	205	0.52			1.00	1.07	23.56	2.87	30,272,075		
95.49	51	5.84	0.001724	21.50	6630	7337	306	1.90	9.00		1.00	1.07	34.67	2.87	6,826,817		
100.00	51	5.84	0.001724	21.50	6280	7296	440	4.12	9.00		1.00	1.07	37.05	2.87	45,060,462		
110.00	51	5.84	0.001724	21.50	6000	7205	522	5.70	9.00		1.10	1.07	42.61	2.87	114,890,502		
119.41	51	5.84	0.001724	21.50	5543	7119	683	9.29	9.00		1.10	1.07	46.83	2.87	118,817,645		
130.00	51	5.84	0.001724	21.50	5810	7023	525	5.77			1.00	1.05	28.64	2.87	81,819,414		
132.41	51	5.84	0.001724	21.50	6037	7001	418	3.72			1.00	1.05	26.48	2.87	17,220,761		
		F	lydropower	Station, h	ead (ft) =	964							2 River Cr	ossings	3,000,000		

Total Cost of Pipeline = 1,109,448,459 50,763,540

	Avg.	Off Peak	On Peak	Flow	Total Lift		Power				Annualiz	ed
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.012	0.035	0.225	82.85	1700	0.85	14,020				11,134,	354
Capital Costs									31,00	00,000	1,418,4	125
O&M Costs											310,	000
								Total Cost of Pump Station(s) =	31.00	00,000	12,863,	27

HYDROPOWER STATION

		Off	On								
	Avg.	Peak	Peak	Flow	Head		Power				Annualized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs (\$)
Energy Cost	0.090	0.035	0.225	82.85	964	0.82	5,539				-5,661,211
Capital Costs									5,800	,000,	265,383
O&M Costs											58,000
								Total Cost of Hydrostation =	5,800	,000	-5,337,828

PROJECT	SUMMARY

PROJECT SUMMART				
Item	Cost	(\$)	Annuali Costs	zed (\$)
Total Construction Cost	1,146,	248,459		
15% Design & Administration	171,	937,269	7,867	,102
10% Contingency	114,	624,846	5,244	,735
TOTAL PROJECT COST	1,432,	810,574	71,400	,827
UNIT WATER COST, FULL USE (\$/af YEARLY OPERATING COST (Energy+0&M			1 5,841	,190 ,642

Alternative 6 - Alignment B, Fontenelle Reservoir to Weber River, Rockport Lake (two pump stations)

PROJECT DATA						
Design Flow (Q) =	60,000	af/yr	=	82.85	cfs	
Manning's Roughness Coefficient (n) =	0.011					
Pipe Diameter (D) =	51	inches	s Interest	Rate =	3.90%	
Area (A) =	14.1863	ft^2	Pe	eriod =	50	yrs.
Wetted Perimeter (Wp)	13.3518	ft				
Velocity (V) =	5.84049	ft/sec	Base Pipe	Cost =	\$21.50	/lf/in
Energy Gradient (S) =	0.00172		Right-of-Way	Cost =	\$1,250	/acre

PIPELINE

Station (miles)	Pipe Diam. (in.)	Velocity (ft/sec)	HGL Slope	Base Pipe Cost (\$/ft/in)	Ground Elev.	HGL Elev.	Avg. Press. (psi)	Add for High Press. (\$/ft/in)	Add for Rock (\$/ft/in)	Add for Ground water (\$/ft/in)	Slope Factor	Appurt. Factor	Unit Pipeline Cost (\$/ft/in)	R/W Cost (\$/lf)	Reach Cost (\$)	Annualized Costs (\$)
、 ,	. ,	Fo	ntenelle Re	servoir El	evation =	6506	,	()	. ,				. ,	(.)		(1)
			tenelle Pur			700					Right	-of-Way W	/idth (ft) =	100		
0.00	51		0.001724	21.50	6506	7206	303	1.86			1.00	1.05	24.53	2.87	0	
10.00	51	5.84	0.001724	21.50	6688	7115	185	0.28			1.00	1.05	22.87	2.87	61,736,048	
20.00	51	5.84	0.001724	21.50	6650	7024	162	0.01			1.00	1.05	22.59	2.87	60,983,283	
30.00	51	5.84	0.001724	21.50	6868	6933	28	0.00			1.00	1.05	22.58	2.87	60,941,475	
33.21	51	5.84	0.001724	21.50	6848	6904	24	0.00			1.00	1.05	22.58	2.87	19,562,214	
34.08	51	5.84	0.001724	21.50	6796	6896	43	0.00			1.00	1.05	22.58	11.48	5,341,461	
		S	Second Pur	np Station	, lift (ft) =	1000										
34.08	51	5.84	0.001724	21.50	6796	7896	477	4.80		9.00	1.00	1.05	37.07	11.48	0	
36.04	51	5.84	0.001724	21.50	7100	7878	337	2.38			1.00	1.05	25.07	11.48	13,350,259	
40.00	51	5.84	0.001724	21.50	7000	7842	365	2.82	3.00		1.00	1.05	28.69	11.48	30,829,082	
48.38	51	5.84	0.001724	21.50	6630	7766	492	5.11	3.00		1.00	1.05	31.09	11.48	70,654,834	
50.00	51	5.84	0.001724	21.50	6596	7751	500	5.27			1.00	1.05	28.11	2.87	12,286,127	
60.00	51	5.84	0.001724	21.50	6655	7660	435	4.04			1.00	1.05	26.81	2.87	72,358,003	
69.90	51	5.84	0.001724	21.50	6870	7570	303	1.86			1.00	1.05	24.53	2.87	65,535,361	
74.61	51	5.84	0.001724	21.50	7482	7527	19	0.00			1.20	1.07	27.61	2.87	35,084,296	
77.18	51	5.84	0.001724	21.50	6950	7503	240	0.97	9.00		1.10	1.07	37.04	2.87	25,672,005	
80.00	51	5.84	0.001724	21.50	6875	7478	261	1.26			1.00	1.07	24.35	2.87	18,534,251	
82.98	51	5.84	0.001724	21.50	6740	7451	308	1.93		6.00	1.00	1.07	31.49	2.87	25,314,022	
85.14	51	5.84	0.001724	21.50	6670	7431	330	2.26		9.00	1.00	1.07	35.05	2.87	20,422,096	
90.00	51	5.84	0.001724	21.50	6800	7387	254	1.16			1.00	1.07	24.25	2.87	31,808,856	
94.76	51	5.84	0.001724	21.50	6871	7343	205	0.52			1.00	1.07	23.56	2.87	30,272,075	
95.49	51	5.84	0.001724	21.50	6630	7337	306	1.90	9.00		1.00	1.07	34.67	2.87	6,826,817	
100.00	51	5.84	0.001724	21.50	6280	7296	440	4.12	9.00		1.00	1.07	37.05	2.87	45,060,462	
110.00	51	5.84	0.001724	21.50	6000	7205	522	5.70	9.00		1.10	1.07	42.61	2.87	114,890,502	
119.41	51	5.84	0.001724	21.50	5543	7119	683	9.29	9.00		1.10	1.07	46.83	2.87	118,817,645	
130.00	51	5.84	0.001724	21.50	5810	7023	525	5.77			1.00	1.05	28.64	2.87	81,819,414	
132.41	51	5.84	0.001724	21.50	6037	7001	418	3.72			1.00	1.05	26.48	2.87	17,220,761	
		Н	ydropower	Station, h	ead (ft) =	964							3 River Cr	ossings	4,500,000	
				,	. /							Total (1,049,821,349	48,035,26

PUMP STATION(S)

		Off	On									
	Avg.	Peak	Peak	Flow	Total Lift		Power				Annual	ized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.012	0.035	0.225	82.85	1700	0.85	14,020				11,134	4,854
Capital Costs									46,6	600,000	2,132	2,213
O&M Costs											466	5,000
								Total Cost of Pump Station(s) =	46,6	600,000	13,733	3,067

HYDROPOWER STATION

Item	Avg. (\$/kwh)	Off Peak (\$/kwh)	On Peak (\$/kwh)	Flow (cfs)	Head (ft)	Effic.	Power (kW)		Cost	(\$)	Annual Costs	ized (\$)
Energy Cost	0.090	0.035	0.225	82.85	964	0.82	· /		0031	(Ψ)	-5,661	• •
Capital Costs	0.000	0.000	0.220	02.00	001	0.02	0,000		6,00	00,000	,	1,534
O&M Costs											60	0,000
								Total Cost of Hydrostation =	6,00	00,000	-5,326	6,677

PROJECT SUMMARY

			Annual	ized
Item	Cost	(\$)	Costs	(\$)
Total Construction Cost	1,102,4	21,349		
15% Design & Administration	165,3	63,202	7,566	3,301
10% Contingency	110,2	42,135	5,044	1,201
TOTAL PROJECT COST	1,378,0	26,686	69,052	2,154
UNIT WATER COST, FULL USE (\$/af)			1	1,151
YEARLY OPERATING COST (Energy+O&M)			5,999),642

Alternative 7 - Alignment C, Flaming Gorge Reservoir to Bear River, near Evanston (one pump station)

PROJECT DATA					
Design Flow (Q) =	60,000	af/yr	= 82.85	cfs	
Manning's Roughness Coefficient (n) =	0.011				
Pipe Diameter (D) =	51	inche	s Interest Rate =	3.90%	
Area (A) =	14.1863	ft^2	Period =	50	yrs.
Wetted Perimeter (Wp)	13.3518	ft			
Velocity (V) =	5.84049	ft/sec	Base Pipe Cost =	\$21.50	/lf/in
Energy Gradient (S) =	0.00172		Right-of-Way Cost =	\$1,250	/acre

PIPELINE

				Base				Add for		Add for			Unit				
	Pipe			Pipe			Avg.	High	Add for	Ground			Pipeline	R/W			
Station	Diam.	Velocity	HGL	Cost	Ground	HGL	Press.	Press.	Rock	water	Slope	Appurt.	Cost	Cost	Reach Cost	Annual	ized
(miles)	(in.)	(ft/sec)	Slope	(\$/ft/in)	Elev.	Elev.	(psi)	(\$/ft/in)	(\$/ft/in)	(\$/ft/in)	Factor	Factor	(\$/ft/in)	(\$/lf)	(\$)	Costs	(\$)
		Flamin	g Gorge Re	eservoir El	evation =	6040											
		Flaming	Gorge Pu	np Station	ı, lift (ft) =	2100					Right	t-of-Way V	Vidth (ft) =	100			
0.00	51	5.84	0.001724	21.50	6040	8140	910	15.46			1.00	1.05	38.80	11.48	0		
10.00	51	5.84	0.001724	21.50	6460	8049	688	9.43			1.00	1.05	32.47	11.48	88,053,542		
20.00	51	5.84	0.001724	21.50	6595	7958	591	7.15			1.00	1.05	30.09	11.48	81,619,152		
30.00	51	5.84	0.001724	21.50	6860	7867	436	4.05			1.00	1.05	26.83	11.48	72,858,949		
36.41	51	5.84	0.001724	21.50	6590	7809	528	5.82			1.00	1.05	28.69	11.48	49,910,800		
43.99	51	5.84	0.001724	21.50	6930	7740	351	2.59		3.00	1.00	1.05	28.45	2.87	58,180,589		
50.00	51	5.84	0.001724	21.50	7450	7685	102	0.00			1.00	1.05	22.58	2.87	36,625,827		
55.43	51	5.84	0.001724	21.50	6840	7635	345	2.50	3.00		1.00	1.07	28.89	2.87	42,317,713		
60.00	51	5.84	0.001724	21.50	7100	7594	214	0.64			1.00	1.07	23.69	2.87	29,216,235		
61.77	51	5.84	0.001724	21.50	6946	7578	274	1.43			1.22	1.07	29.94	2.87	14,295,341		
69.05	51	5.84	0.001724	21.50	7482	7511	13	0.00	9.00		1.10	1.07	35.90	2.87	70,484,229		
70.00	51	5.84	0.001724	21.50	6940	7503	244	1.02			1.20	1.07	28.92	2.87	7,412,536		
74.85	51	5.84	0.001724	21.50	6740	7459	311	1.98			1.00	1.07	25.13	2.87	32,887,088		
		F	lydropower	Station, h	ead (ft) =	719							2 River Cr	ossings	3,000,000		

Total Cost of Pipeline = 586,862,001 26,852,255

PUMP STATION

		Off	On						
	Avg.	Peak	Peak	Flow	Total Lift		Power	Cost	Annualized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)	(\$)	Costs (\$)
Energy Cost	0.012	0.035	0.225	82.85	2100	0.85	17,318		13,754,819
Capital Costs								31,000,000	1,418,425
O&M Costs									310,000

Total Cost of Pump Station(s) = 31,000,000 15,483,244

HYDROPOWER STATION

		Off	On							
	Avg.	Peak	Peak	Flow	Head		Power		Cost	Annualized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		(\$)	Costs (\$)
Energy Cost	0.090	0.035	0.225	82.85	719	0.82	4,131			-4,221,714
Capital Costs									6,000,000	274,534
O&M Costs										60,000
								Total Cost of Hydrostation =	6,000,000	-3,887,180

PROJECT SUMMARY

	Cost	Annualiz	ed
Item	(\$)	Costs	(\$)
Total Construction Cost	623,862,001		
15% Design & Administration	93,579,300	4,281,7	'82
10% Contingency	62,386,200	2,854,5	21
TOTAL PROJECT C	COST 779,827,501	45,584,6	22

UNIT WATER COST, FULL USE (\$/af) YEARLY OPERATING COST (Energy+O&M) 9,903,105

760

Alternative 8 - Alignment C, Flaming Gorge Reservoir to Bear River, near Evanston (two pump stations)

PROJECT DATA					
Design Flow (Q) =	60,000	af/yr	= 82.85	cfs	
Manning's Roughness Coefficient (n) =	0.011				
Pipe Diameter (D) =	51	inches	Interest Rate =	3.90%	
Area (A) =	14.1863	ft^2	Period =	50	yrs.
Wetted Perimeter (Wp)	13.3518	ft			
Velocity (V) =	5.84049	ft/sec	Base Pipe Cost =	\$21.50	/lf/in
Energy Gradient (S) =	0.00172		Right-of-Way Cost =	\$1,250	/acre

PIPELINE

				Base				Add for		Add for			Unit				
	Pipe			Pipe			Avg.	High	Add for	Ground			Pipeline	R/W			
Station	Diam.	Velocity	HGL	Cost	Ground	HGL	Press.	Press.	Rock	water	Slope	Appurt.	Cost	Cost	Reach Cost	Annual	ized
(miles)	(in.)	(ft/sec)	Slope	(\$/ft/in)	Elev.	Elev.	(psi)	(\$/ft/in)	(\$/ft/in)	(\$/ft/in)	Factor	Factor	(\$/ft/in)	(\$/lf)	(\$)	Costs	(\$)
		Flamin	g Gorge Re	eservoir El	evation =	6040											
		Flaming	Gorge Pur	mp Station	, lift (ft) =	1400					Right	-of-Way V	Vidth (ft) =	100			
0.00	51	5.84	0.001724	21.50	6040	7440	607	7.51			1.00	1.05	30.46	11.48	0		
10.00	51	5.84	0.001724	21.50	6460	7349	385	3.16			1.00	1.05	25.89	11.48	70,327,789		
20.00	51	5.84	0.001724	21.50	6595	7258	287	1.63			1.00	1.05	24.28	11.48	65,992,927		
30.00	51	5.84	0.001724	21.50	6860	7167	133	0.00			1.00	1.05	22.58	11.48	61,396,104		
36.41	51	5.84	0.001724	21.50	6590	7109	225	0.77			1.00	1.05	23.39	11.48	40,754,027		
43.99	51	5.84	0.001724	21.50	6930	7040	47	0.00		3.00	1.00	1.05	25.73	2.87	52,623,237		
		5	Second Pur	mp Station	, lift (ft) =	700											
43.99	51	5.84	0.001724	21.50	6930	7740	351	2.59		3.00	1.00	1.05	28.45	2.87	0		
50.00	51	5.84	0.001724	21.50	7450	7685	102	0.00			1.00	1.05	22.58	2.87	36,625,827		
55.43	51	5.84	0.001724	21.50	6840	7635	345	2.50	3.00		1.00	1.07	28.89	2.87	42,317,713		
60.00	51	5.84	0.001724	21.50	7100	7594	214	0.64			1.00	1.07	23.69	2.87	29,216,235		
61.77	51	5.84	0.001724	21.50	6946	7578	274	1.43			1.22	1.07	29.94	2.87	14,295,341		
69.05	51	5.84	0.001724	21.50	7482	7511	13	0.00	9.00		1.10	1.07	35.90	2.87	70,484,229		
70.00	51	5.84	0.001724	21.50	6940	7503	244	1.02			1.20	1.07	28.92	2.87	7,412,536		
74.85	51	5.84	0.001724	21.50	6740	7459	311	1.98			1.00	1.07	25.13	2.87	32,887,088		
		F	lydropower	Station, h	ead (ft) =	719							2 River Cr	ossings	3,000,000		
												Total	Cost of Di	online =	527.333.054	24.128	2 160

Total Cost of Pipeline = 527,333,054 24,128,469

PUMP STATION(S)

		Off	On						
	Avg.	Peak	Peak	Flow	Total Lift		Power	Cost	Annualized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)	(\$)	Costs (\$)
Energy Cost	0.012	0.035	0.225	82.85	2100	0.85	17,318		13,754,819
Capital Costs								52,500,000	2,402,172
O&M Costs									525,000

Total Cost of Pump Station(s) = 52,500,000 16,681,991

HYDROPOWER STATION

		Off	On							
	Avg.	Peak	Peak	Flow	Head		Power		Cost	Annualized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		(\$)	Costs (\$)
Energy Cost	0.090	0.035	0.225	82.85	719	0.82	4,131			-4,221,714
Capital Costs									6,000,000	274,534
O&M Costs										60,000
								Total Cost of Hydrostation =	6,000,000	-3,887,180

	Cost	Annualized
Item	(\$)	Costs (\$)
Total Construction Cost	585,833,054	ŀ
15% Design & Administration	87,874,958	4,020,776
10% Contingency	58,583,305	2,680,517
	TOTAL PROJECT COST 732,291,317	43,624,573

UNIT WATER COST, FULL USE (\$/af) 727 YEARLY OPERATING COST (Energy+O&M) 10,118,105

Alternative 9 - Alignment C, Flaming Gorge Reservoir to Weber River, Echo Reservoir (one pump station)

PROJECT DATA					
Design Flow (Q) =	60,000	af/yr	= 82.85	cfs	
Manning's Roughness Coefficient (n) =	0.011				
Pipe Diameter (D) =	51	inches	Interest Rate =	3.90%	
Area (A) =	14.1863	ft^2	Period =	50	yrs.
Wetted Perimeter (Wp)	13.3518	ft			
Velocity (V) =	5.84049	ft/sec	Base Pipe Cost =	\$21.50	/lf/in
Energy Gradient (S) =	0.00172	F	Right-of-Way Cost =	\$1,250	/acre

PIPELINE

Station (miles)	Pipe Diam. (in.)	Velocity (ft/sec)	HGL Slope	Base Pipe Cost (\$/ft/in)	Ground Elev.	HGL Elev.	Avg. Press. (psi)	Add for High Press. (\$/ft/in)	Add for Rock (\$/ft/in)	Add for Ground water (\$/ft/in)	Slope Factor	Appurt. Factor	Unit Pipeline Cost (\$/ft/in)	R/W Cost (\$/lf)	Reach Cost (\$)	Annuali Costs	ized (\$)
(inics)	()	· · ·	g Gorge Re	1	-	6040	(p3i)	(#/10/11)	(\$710111)	(#/10111)	1 40101	1 40101	(#/10111)	(ψ/11)	(Ψ)	00313	(Ψ)
			Gorge Pu			2100					Right	-of-Wav V	Vidth (ft) =	100			
0.00	51		0.001724	21.50		8140	910	15.46			1.00	1.05	38.80	11.48	0		
10.00			0.001724	21.50	6460	8049	688	9.43			1.00	1.05	32.47	11.48	88,053,542		
20.00	-		0.001724	21.50	6595	7958	591	7.15			1.00	1.05	30.09	11.48	81,619,152		
30.00	51	5.84	0.001724	21.50	6860	7867	436	4.05			1.00	1.05	26.83	11.48	72,858,949		
36.41	51	5.84	0.001724	21.50	6590	7809	528	5.82			1.00	1.05	28.69	11.48	49,910,800		
43.99	51	5.84	0.001724	21.50	6930	7740	351	2.59		3.00	1.00	1.05	28.45	2.87	58,180,589		
50.00	51	5.84	0.001724	21.50	7450	7685	102	0.00			1.00	1.05	22.58	2.87	36,625,827		
55.43	51	5.84	0.001724	21.50	6840	7635	345	2.50	3.00		1.00	1.07	28.89	2.87	42,317,713		
60.00	51	5.84	0.001724	21.50	7100	7594	214	0.64			1.00	1.07	23.69	2.87	29,216,235		
61.77	51	5.84	0.001724	21.50	6946	7578	274	1.43			1.22	1.07	29.94	2.87	14,295,341		
69.05	51	5.84	0.001724	21.50	7482	7511	13	0.00	9.00		1.10	1.07	35.90	2.87	70,484,229		
70.00	51	5.84	0.001724	21.50	6940	7503	244	1.02			1.20	1.07	28.92	2.87	7,412,536		
74.85	51	5.84	0.001724	21.50	6740	7459	311	1.98			1.00	1.07	25.13	2.87	32,887,088		
77.01	51	5.84	0.001724	21.50	6672	7439	332	2.30		9.00	1.00	1.07	35.10	2.87	20,447,239		
80.00	51	5.84	0.001724	21.50	6775	7412	276	1.46			1.00	1.07	24.57	2.87	19,828,775		
87.36	51	5.84	0.001724	21.50	6871	7345	205	0.53			1.00	1.07	23.57	2.87	46,822,713		
90.00	51	5.84	0.001724	21.50	6400	7321	399	3.39	9.00		1.00	1.07	36.27	2.87	25,821,652		
100.00	51	5.84	0.001724	21.50	6025	7230	522	5.70	9.00		1.00	1.07	38.74	2.87	104,460,392		
110.00	51	5.84	0.001724	21.50	5500	7139	710	9.96	9.00		1.10	1.07	47.62	2.87	128,389,313		
111.15	51	5.84	0.001724	21.50	5543	7128	687	9.39	9.00		1.10	1.07	46.95	2.87	14,556,120		
		H	lydropower	Station, h	ead (ft) =	1585							3 River Cr	ossings	4,500,000		
												Total	Cost of Pip	peline =	948,688,205	43,407	7,849

Total Cost of Pipeline =

PUMP STATION

		Off	On									
	Avg.	Peak	Peak	Flow	Total Lift		Power				Annualia	zed
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.012	0.035	0.225	82.85	2100	0.85	17,318				13,754,	819
Capital Costs									31,000	,000,	1,418,	425
O&M Costs											310,	000
								Total Cost of Pump Station(s) =	31,000	,000	15,483,	244

HYDROPOWER STATION

		Off	On									
	Avg.	Peak	Peak	Flow	Head		Power				Annuali	ized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.090	0.035	0.225	82.85	1585	0.82	9,112				-9,312	2,333
Capital Costs									7,100	0,000	324	1,865
O&M Costs											71	,000
								Total Cost of Hydrostation =	7,100	0,000	-8,916	6,468

PROJECT SUMMARY

			Annualize	d
Item		Cost (\$)	Costs ((\$)
Total Construction Cost		986,788,205		
15% Design & Administration		148,018,231	6,772,6	71
10% Contingency		98,678,820	4,515,1	14
	TOTAL PROJECT COST	1,233,485,256	61,262,4	11
	UNIT WATER COST FULL USE (\$/af)		1.0	21

UNIT WATER COST, FULL USE (\$/af) YEARLY OPERATING COST (Energy+O&M) 1,021 4,823,486

Alternative 10 - Alignment C, Flaming Gorge Reservoir to Weber River, Echo Reservoir (two pump stations)

PROJECT DATA						
Design Flow (Q) =	60,000	af/yr	=	82.85	cfs	
Manning's Roughness Coefficient (n) =	0.011					
Pipe Diameter (D) =	51	inches	s Interest	Rate =	3.90%	
Area (A) =	14.1863	ft^2	F	eriod =	50	yrs.
Wetted Perimeter (Wp)	13.3518	ft				
Velocity (V) =	5.84049	ft/sec	Base Pipe	Cost =	\$21.50	/lf/in
Energy Gradient (S) =	0.00172		Right-of-Way	Cost =	\$1,250	/acre
					\$2000/acr	re in roadl

PIPELINE

PELINE	Pipe			Base Pipe			Avg.	Add for High	Add for	Add for Ground			Unit Pipeline	R/W		Annualized
Station	Diam.	Velocity	HGL	Cost	Ground	HGL	Press.	Press.	Rock	water	Slope	Appurt.	Cost	Cost	Reach Cost	Costs
(miles)	(in.)	(ft/sec)	Slope	(\$/ft/in)	Elev.	Elev.	(psi)	(\$/ft/in)	(\$/ft/in)	(\$/ft/in)	Factor	Factor	(\$/ft/in)	(\$/lf)	(\$)	(\$)
. ,	. ,	Flamin	g Gorge Re	eservoir El	evation =	6040		. ,					,	. ,	,	
			Gorge Pu			1400					Right	-of-Way V	Vidth (ft) =	100		
0.00	51	5.84	0.001724	. 21.50	6040	7440	607	7.51			1.00	1.05	30.46	11.48	0	
10.00	51	5.84	0.001724	21.50	6460	7349	385	3.16			1.00	1.05	25.89	11.48	70,327,789	
20.00	51	5.84	0.001724	21.50	6595	7258	287	1.63			1.00	1.05	24.28	11.48	65,992,927	
30.00	51	5.84	0.001724	21.50	6860	7167	133	0.00			1.00	1.05	22.58	11.48	61,396,104	
36.41	51	5.84	0.001724	21.50	6590	7109	225	0.77			1.00	1.05	23.39	11.48	40,754,027	
43.99	51	5.84	0.001724	21.50	6930	7040	47	0.00		3.00	1.00	1.05	25.73	2.87	52,623,237	
			Second Pu	mp Station	, lift (ft) =	700										
43.99	51		0.001724	21.50	6930	7740	351	2.59		3.00	1.00	1.05	28.45	2.87	0	
50.00	51		0.001724	21.50	7450	7685	102	0.00			1.00	1.05	22.58	2.87	36,625,827	
55.43	51		0.001724	21.50	6840	7635	345	2.50	3.00		1.00	1.07	28.89	2.87	42,317,713	
60.00	51		0.001724	21.50	7100	7594	214	0.64			1.00	1.07	23.69	2.87	29,216,235	
61.77	51		0.001724	21.50	6946	7578	274	1.43			1.22	1.07	29.94	2.87	14,295,341	
69.05	51		0.001724	21.50	7482	7511	13	0.00	9.00		1.10	1.07	35.90	2.87	70,484,229	
70.00	51		0.001724	21.50	6940	7503	244	1.02			1.20	1.07	28.92	2.87	7,412,536	
74.85	51		0.001724	21.50	6740	7459	311	1.98			1.00	1.07	25.13	2.87	32,887,088	
77.01	51		0.001724	21.50	6672	7439	332	2.30		9.00	1.00	1.07	35.10	2.87	20,447,239	
80.00	51		0.001724	21.50	6775	7412	276	1.46			1.00	1.07	24.57	2.87	19,828,775	
87.36	51		0.001724	21.50	6871	7345	205	0.53			1.00	1.07	23.57	2.87	46,822,713	
90.00	51		0.001724	21.50	6400	7321	399	3.39	9.00		1.00	1.07	36.27	2.87	25,821,652	
100.00	51		0.001724	21.50	6025	7230	522	5.70	9.00		1.00	1.07	38.74	2.87	104,460,392	
110.00	51		0.001724	21.50	5500	7139	710	9.96	9.00		1.10	1.07	47.62	2.87	128,389,313	
111.15	51		0.001724	21.50	5543	7128	687	9.39	9.00		1.10	1.07	46.95	2.87	14,556,120	
		H	lydropower	Station, h	ead (ft) =	1585							3 River Cr	0	4,500,000	
												Total	Cost of Pip	eline =	889,159,257	40,684,06

PUMP STATION(S)

		Off	On									
	Avg.	Peak	Peak	Flow	Total Lift		Power				Annual	ized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.012	0.035	0.225	82.85	2100	0.85	17,318				13,754	1,819
Capital Costs									52,5	500,000	2,402	2,172
O&M Costs											525	5,000
								Total Cost of Pump Station(s) =	52,5	500,000	16,681	1,991

HYDROPOWER STATION

		Off	On									
	Avg.	Peak	Peak	Flow	Head		Power				Annuali	ized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.090	0.035	0.225	82.85	1585	0.82	9,112				-9,312	2,333
Capital Costs									6,800	0,000,	311	1,138
O&M Costs											68	8,000
								Total Cost of Hydrostation =	6,800	,000	-8,933	3,194

			Annual	ized
Item	Cost	(\$)	Costs	(\$)
Total Construction Cost	948,	459,257		
15% Design & Administration	142,	268,889	6,50	9,606
10% Contingency	94,	845,926	4,33	9,737
TOTAL PROJECT COST	1,185,	574,072	59,28	2,203
UNIT WATER COST, FULL USE (\$/af)				988
YEARLY OPERATING COST (Energy+O&M)			5,03	5,486

Alternative 11 - Alignment C, Flaming Gorge Reservoir to Weber River, Rockport Lake (one pump station)

PROJECT DATA				
Design Flow (Q) =	60,000	af/yr	= 82.85	cfs
Manning's Roughness Coefficient (n) =	0.011			
Pipe Diameter (D) =	51	inche	s Interest Rate =	3.90%
Area (A) =	14.1863	ft^2	Period =	50 yrs.
Wetted Perimeter (Wp)	13.3518	ft		
Velocity (V) =	5.84049	ft/sec	Base Pipe Cost =	\$21.50 /lf/in
Energy Gradient (S) =	0.00172		Right-of-Way Cost =	\$1,250 /acre

PIPELINE

				Base				Add for		Add for			Unit				
	Pipe			Pipe			Avg.	High	Add for	Ground			Pipeline	R/W			
Station	Diam.	Velocity	HGL	Cost	Ground	HGL	Press.	Press.	Rock	water	Slope	Appurt.	Cost	Cost	Reach Cost	Annual	ized
(miles)	(in.)	(ft/sec)	Slope	(\$/ft/in)	Elev.	Elev.	(psi)	(\$/ft/in)	(\$/ft/in)	(\$/ft/in)	Factor	Factor	(\$/ft/in)	(\$/lf)	(\$)	Costs	(\$)
			g Gorge Re			6040											
			g Gorge Pur			2100							Vidth (ft) =	100			
0.00	51	5.84	0.001724	21.50		8140		15.46			1.00	1.05	38.80	11.48	0		
10.00	51	5.84	0.001724	21.50		8049	688	9.43			1.00	1.05	32.47	11.48	88,053,542		
20.00	51	5.84	0.001724	21.50		7958	591	7.15			1.00	1.05	30.09	11.48	81,619,152		
30.00		5.84	0.001724	21.50		7867	436	4.05			1.00	1.05	26.83	11.48	72,858,949		
36.41	51	5.84	0.001724	21.50		7809	528	5.82			1.00	1.05	28.69	11.48	49,910,800		
43.99		5.84	0.001724	21.50		7740		2.59		3.00	1.00	1.05	28.45	2.87	58,180,589		
50.00	51	5.84	0.001724	21.50		7685	102	0.00			1.00	1.05	22.58	2.87	36,625,827		
55.43		5.84	0.001724	21.50		7635		2.50	3.00		1.00	1.07	28.89	2.87	42,317,713		
60.00	51	5.84	0.001724	21.50		7594	214	0.64			1.00	1.07	23.69	2.87	29,216,235		
61.77		5.84	0.001724	21.50		7578		1.43			1.22	1.07	29.94	2.87	14,295,341		
69.05	-	5.84	0.001724	21.50		7511	13	0.00	9.00		1.10	1.07	35.90	2.87	70,484,229		
70.00		5.84	0.001724	21.50		7503		1.02			1.20	1.07	28.92	2.87	7,412,536		
74.85		5.84	0.001724	21.50		7459	311	1.98			1.00	1.07	25.13	2.87	32,887,088		
77.01	51	5.84	0.001724	21.50	6672	7439		2.30		9.00	1.00	1.07	35.10	2.87	20,447,239		
80.00	51	5.84	0.001724	21.50	6775	7412	276	1.46			1.00	1.07	24.57	2.87	19,828,775		
87.36	51	5.84	0.001724	21.50	6871	7345	205	0.53			1.00	1.07	23.57	2.87	46,822,713		
90.00	51	5.84	0.001724	21.50	6400	7321	399	3.39	9.00		1.00	1.07	36.27	2.87	25,821,652		
100.00	51	5.84	0.001724	21.50	6025	7230	522	5.70	9.00		1.00	1.07	38.74	2.87	104,460,392		
110.00	51	5.84	0.001724	21.50	5500	7139	710	9.96	9.00		1.10	1.07	47.62	2.87	128,389,313		
111.15	51	5.84	0.001724	21.50	5543	7128	687	9.39	9.00		1.10	1.07	46.95	2.87	14,556,120		
120.00	51	5.84	0.001724	21.50	5790	7048	545	6.17			1.00	1.07	29.61	2.87	70,702,098		
124.35	51	5.84	0.001724	21.50	6037	7008	421	3.78			1.00	1.07	27.04	2.87	31,744,861		
		F	lydropower	Station, h	ead (ft) =	971							4 River Cr	ossings	6,000,000		

Total Cost of Pipeline = 1,052,635,164 48,164,010

PUMP STATION

		Off	On		Total					
	Avg.	Peak	Peak	Flow	Lift		Power			Annualized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost (\$) Costs (\$)
Energy Cost	0.012	0.035	0.225	82.85	2100	0.85	17,318			13,754,819
Capital Costs									31,000,00	0 1,418,425
O&M Costs										310,000
								Total Cost of Pump Station(s) =	31,000,00	0 15,483,244

HYDROPOWER STATION

	A.v.a	Off	On Deak	Flow	Head		Dowor				Annuali	-
Item	Avg. (\$/kwh)	Peak (\$/kwh)	Peak (\$/kwb)	Flow (cfs)	Head (ft)	Effic.	Power (kW)		Cost (Costs	zea (\$)
	1 1	N 7	· · · /	()	. ,	-	()		0031 (φι		
Energy Cost	0.090	0.035	0.225	82.85	971	0.82	5,582				-5,704,	,497
Capital Costs									5,800,0	00	265,	,383
O&M Costs											58,	,000
								Total Cost of Hydrostation =	5,800,0	00	-5,381,	114

PROJECT SUMMARY

			Annua	lized
Item	Cost	(\$)	Costs	(\$)
Total Construction Cost	1,089,4	435,164		
15% Design & Administration	163,4	415,275	7,47	7,173
10% Contingency	108,9	943,516	4,98	4,782
TOTAL PROJECT COST	1,361,7	793,955	70,72	8,095
UNIT WATER COST, FULL USE (\$/af)			1,179
YEARLY OPERATING COST (Energy+O&M)		8,41	8,322

Alternative 12 - Alignment C, Flaming Gorge Reservoir to Weber River, Rockport Lake (two pump stations)

PROJECT DATA						
Design Flow (Q) =	60,000	af/yr	= 82.85	cfs		
Manning's Roughness Coefficient (n) =	0.011					
Pipe Diameter (D) =	51	inches	Interest Rate =	3.90%		
Area (A) =	14.1863	ft^2	Period =	50	yrs.	
Wetted Perimeter (Wp)	13.3518	ft				
Velocity (V) =	5.84049	ft/sec	Base Pipe Cost =	\$21.50	/lf/in	
Energy Gradient (S) =	0.00172		Right-of-Way Cost =	\$1,250	/acre	
				\$2000/aci	re in roadl	ess

PIPELINE

	Pipe			Base Pipe			Avg.	Add for High		Add for Groundw		_	Unit Pipeline	R/W		_	
Station	Diam.	Velocity	HGL	Cost	Ground	HGL	Press.	Press.	Rock	ater	Slope	Appurt.	Cost	Cost	Reach Cost	Annual	
(miles)	(in.)	(ft/sec)	Slope	(\$/ft/in)	Elev.	Elev.	(psi)	(\$/ft/in)	(\$/ft/in)	(\$/ft/in)	Factor	Factor	(\$/ft/in)	(\$/lf)	(\$)	Costs	(\$
			g Gorge Re			6040											
			Gorge Pu			1400					<u> </u>		Vidth (ft) =	100			
0.00	51		0.001724	21.50		7440	607	7.51			1.00	1.05	30.46	11.48	0		
10.00	-		0.001724	21.50	6460	7349	385	3.16			1.00	1.05	25.89	11.48	70,327,789		
20.00	-		0.001724	21.50	6595	7258	287	1.63			1.00	1.05	24.28	11.48	65,992,927		
30.00			0.001724	21.50	6860	7167	133	0.00			1.00	1.05	22.58	11.48	61,396,104		
36.41	51		0.001724	21.50	6590	7109	225	0.77			1.00	1.05	23.39	11.48	40,754,027		
43.99	51		0.001724	21.50		7040	47	0.00		3.00	1.00	1.05	25.73	11.48	52,967,845		
			Second Pu			700											
43.99			0.001724	21.50	6930	7740	351	2.59		3.00	1.00	1.05	28.45	2.87	0		
50.00			0.001724	21.50	7450	7685	102	0.00			1.00	1.05	22.58	2.87	36,625,827		
55.43			0.001724	21.50	6840	7635	345	2.50	3.00		1.00	1.07	28.89	2.87	42,317,713		
60.00		5.84	0.001724	21.50	7100	7594	214	0.64			1.00	1.07	23.69	2.87	29,216,235		
61.77	51	5.84	0.001724	21.50	6946	7578	274	1.43			1.22	1.07	29.94	2.87	14,295,341		
69.05	51	5.84	0.001724	21.50	7482	7511	13	0.00	9.00		1.10	1.07	35.90	2.87	70,484,229		
70.00	51	5.84	0.001724	21.50	6940	7503	244	1.02			1.20	1.07	28.92	2.87	7,412,536		
74.85	51	5.84	0.001724	21.50	6740	7459	311	1.98			1.00	1.07	25.13	2.87	32,887,088		
77.01	51	5.84	0.001724	21.50	6672	7439	332	2.30		9.00	1.00	1.07	35.10	2.87	20,447,239		
80.00	51	5.84	0.001724	21.50	6775	7412	276	1.46			1.00	1.07	24.57	2.87	19,828,775		
87.36	51	5.84	0.001724	21.50	6871	7345	205	0.53			1.00	1.07	23.57	2.87	46,822,713		
90.00	51	5.84	0.001724	21.50	6400	7321	399	3.39	9.00		1.00	1.07	36.27	2.87	25,821,652		
100.00	51	5.84	0.001724	21.50	6025	7230	522	5.70	9.00		1.00	1.07	38.74	2.87	104,460,392		
110.00	51	5.84	0.001724	21.50	5500	7139	710	9.96	9.00		1.10	1.07	47.62	2.87	128,389,313		
111.15	51	5.84	0.001724	21.50	5543	7128	687	9.39	9.00		1.10	1.07	46.95	2.87	14,556,120		
120.00	51	5.84	0.001724	21.50	5790	7048	545	6.17			1.00	1.07	29.61	2.87	70,702,098		
124.35	51	5.84	0.001724	21.50	6037	7008	421	3.78			1.00	1.07	27.04	2.87	31,744,861		
		H	lydropower	Station, h	ead (ft) =	971							4 River Cr	ossings	6,000,000		
				,								Total	Cost of Pig		993,450,825	45,455	5.99

PUMP STATION(S)

		Off	On									
	Avg.	Peak	Peak	Flow	Total Lift		Power				Annual	ized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.012	0.035	0.225	82.85	2100	0.85	17,318				13,754	4,819
Capital Costs									52,5	600,000	2,402	2,172
O&M Costs											525	5,000
								Total Cost of Pump Station(s) =	52,5	600,000	16,681	1,991

HYDROPOWER STATION

		Off	On									
	Avg.	Peak	Peak	Flow	Head		Power				Annuali	ized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.090	0.035	0.225	82.85	971	0.82	5,582				-5,704	,497
Capital Costs									6,800,	000	311	1,138
O&M Costs											68	3,000
								Total Cost of Hydrostation =	6,800,	000	-5,325	,359

PROJECT SUMMARY

			Annual	ized
Item	Cost	(\$)	Costs	(\$)
Total Construction Cost	1,052,	750,825		
15% Design & Administration	157,	912,624	7,225	5,395
10% Contingency	105,	275,083	4,816	6,930
TOTAL PROJECT COST	1,315,	938,532	68,854	4,950
UNIT WATER COST, FULL USE (\$/af)			1	1,148

YEARLY OPERATING COST (Energy+O&M) 8,643,322

Alternative 13 - Alignment D, Flaming Gorge Reservoir to Weber River, Echo Reservoir (one pump station)

PROJECT DATA	
Design Flow (Q) =	60,000 af/yr = 82.85 cfs
Manning's Roughness Coefficient (n) =	0.011
Pipe Diameter (D) =	51 inches Interest Rate = 3.90%
Area (A) =	14.1863 ft^2 Period = 50 yrs.
Wetted Perimeter (Wp)	13.3518 ft
Velocity (V) =	5.84049 ft/sec Base Pipe Cost = \$21.50 /lf/in
Energy Gradient (S) =	0.00172 Right-of-Way Cost = \$1,250 /acre

PIPELINE

				Base				Add for		Add for			Unit				
	Pipe			Pipe			Avg.	High	Add for	Ground			Pipeline	R/W			
Station	Diam.	Velocity	HGL	Cost	Ground	HGL	Press.	Press.	Rock	water	Slope	Appurt.	Cost	Cost	Reach Cost	Annual	ized
(miles)	(in.)	(ft/sec)	Slope	(\$/ft/in)	Elev.	Elev.	(psi)	(\$/ft/in)	(\$/ft/in)	(\$/ft/in)	Factor	Factor	(\$/ft/in)	(\$/lf)	(\$)	Costs	(\$)
		Flamin	g Gorge Re	eservoir El	evation =	6040											
		Flaming	Gorge Pur	np Station	, lift (ft) =	2350					Right	-of-Way W	/idth (ft) =	100			
0.00	51	5.84	0.001724	21.50	6040	8390	1018	18.85			1.00	1.05	42.37	2.87	0		
9.94	51	5.84	0.001724	21.50	7200	8300	476	4.80			1.00	1.05	27.62	11.48	74,525,752		
20.00	51	5.84	0.001724	21.50	7205	8208	435	4.02			1.00	1.05	26.80	2.87	72,749,968		
30.00	51	5.84	0.001724	21.50	7588	8117	229	0.83			1.00	1.05	23.45	2.87	63,288,035		
32.31	51	5.84	0.001724	21.50	7613	8096	209	0.58			1.00	1.05	23.18	2.87	14,453,726		
40.00	51	5.84	0.001724	21.50	7960	8026	29	0.00	3.00		1.00	1.05	25.73	2.87	53,386,898		
50.00	51	5.84	0.001724	21.50	6745	7935	516	5.57			1.00	1.05	28.43	2.87	76,695,643		
54.93	51	5.84	0.001724	21.50	6930	7890	416	3.69		3.00	1.00	1.05	29.60	2.87	39,369,662		
60.00	51	5.84	0.001724	21.50	7365	7844	207	0.55			1.00	1.05	23.16	2.87	31,691,726		
63.01	51	5.84	0.001724	21.50	7458	7816	155	0.00			1.00	1.05	22.58	2.87	18,343,384		
66.37	51	5.84	0.001724	21.50	6840	7786	410	3.58	3.00		1.00	1.07	30.05	2.87	27,237,987		
70.00	51	5.84	0.001724	21.50	7326	7753	185	0.28			1.22	1.07	28.43	2.87	27,846,720		
72.71	51	5.84	0.001724	21.50	6946	7728	339	2.40			1.10	1.07	28.14	2.87	20,572,879		
77.36	51	5.84	0.001724	21.50	7482	7686	88	0.00			1.20	1.07	27.61	2.87	34,637,363		
80.00	51	5.84	0.001724	21.50	6946	7662	310	1.96	9.00		1.00	1.07	34.74	2.87	24,733,132		
85.79	51	5.84	0.001724	21.50	6740	7609	377	3.01			1.00	1.07	26.23	2.87	40,984,244		
87.95	51	5.84	0.001724	21.50	6672	7589	397	3.37		9.00	1.00	1.07	36.24	2.87	21,111,314		
90.00	51	5.84	0.001724	21.50	6750	7571	356	2.67			1.00	1.07	25.86	2.87	14,307,989		
97.18	51	5.84	0.001724	21.50	6871	7505	275	1.45			1.00	1.07	24.56	2.87	47,585,360		
98.30	51	5.84	0.001724	21.50	6600	7495	388	3.20			1.00	1.07	26.43	2.87	7,989,252		
100.00	51	5.84	0.001724	21.50	6496	7480	426	3.87	9.00		1.00	1.07	36.78	2.87	16,862,318		
110.00	51	5.84	0.001724	21.50	6090	7389	563	6.55	9.00		1.00	1.07	39.64	2.87	106,901,510		
120.00	51	5.84	0.001724	21.50	5525	7298	768	11.45	9.00		1.10	1.07	49.38	2.87	133,122,209		
122.22	51	5.84	0.001724	21.50	5543	7277	751	11.02	9.00		1.10	1.07	48.87	2.87	29,247,434		
		H	lydropower	Station, h	ead (ft) =	1734							3 River Cr	ossings	4,500,000		
			·									Total (Cost of Pip	peline =	1,002,144,507	45,853	3,77

PUMP STATION

		Off	On		Total							
	Avg.	Peak	Peak	Flow	Lift		Power				Annua	lized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.012	0.035	0.225	82.85	2350	0.85	19,380				15,39	2,298
Capital Costs									31,	000,000	1,41	8,425
O&M Costs											31	0,000
								Total Cost of Pump Station(s) =	31,	000,000	17,12	0,723

HYDROPOWER STATION

		Off	On									
	Avg.	Peak	Peak	Flow	Head		Power				Annual	ized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.090	0.035	0.225	82.85	1734	0.82	9,970				-10,188	3,990
Capital Costs									6,8	300,000	311	1,138
O&M Costs											68	3,000
								Total Cost of Hydrostation =	6,8	B OO,OOO	-9,809	9,852

			Annua	lized
Item	Cost	(\$)	Costs	(\$)
Total Construction Cost	1,039,944	,507		
15% Design & Administration	155,991	,676	7,13	7,501
10% Contingency	103,994	,451	4,75	8,334
TOTAL PROJECT COST	1,299,930	,633	65,06	0,484
UNIT WATER COST, FULL USE (\$/af)				1,084
YEARLY OPERATING COST (Energy+O&M)			5,58	1,307

Alternative 14 - Alignment D, Flaming Gorge Reservoir to Weber River, Echo Reservoir (two pump stations)

PROJECT DATA						
Design Flow (Q) =	60,000	af/yr	= 82.8	5 cfs]
Manning's Roughness Coefficient (n) =	0.011					
Pipe Diameter (D) =	51	inches	Interest Rate	= 3.909	6	
Area (A) =	14.1863	ft^2	Period	= 5	0 yrs.	
Wetted Perimeter (Wp)	13.3518	ft				
Velocity (V) =	5.84049	ft/sec	Base Pipe Cost	= \$21.5	0 /lf/in	
Energy Gradient (S) =	0.00172		Right-of-Way Cost :	= \$1,25	0 /acre	
				\$2000/a	cre in road	less

PIPELINE

PIPELINE				Base				Add for		Add for			Unit				
	Pipe			Pipe			Avg.	High	Add for	Ground			Pipeline	R/W			
Station	Diam.	Velocity	HGL	Cost	Ground	HGL	Press.	Press.	Rock	water	Slope	Appurt.	Cost	Cost	Reach Cost	Annuali	ized
(miles)	(in.)	(ft/sec)	Slope	(\$/ft/in)	Elev.	Elev.	(psi)	(\$/ft/in)	(\$/ft/in)	(\$/ft/in)	Factor	Factor	(\$/ft/in)	(\$/lf)	(\$)	Costs	(\$)
			g Gorge Re			6040											
		Flaming	g Gorge Pu	mp Statior	n, lift (ft) =	1400					Righ	t-of-Way V	Vidth (ft) =	100			
0.00	51	5.84	0.001724	21.50	6040	7440	607	7.51			1.00	1.05	30.46	2.87	0		
9.94	51	5.84	0.001724	21.50	7200	7350	65	0.00			1.00	1.05	22.58	11.48	61,027,727		
20.00	51	5.84	0.001724	21.50	7205	7258	23	0.00			1.00	1.05	22.58	2.87	61,307,124		
		9	Second Pu	mp Statior	n, lift (ft) =	950											
20.00	51		0.001724	21.50		8208	435	4.02			1.00	1.05	26.80	2.87	0		
30.00	51	5.84	0.001724	21.50	7588	8117	229	0.83			1.00	1.05	23.45	2.87	63,288,035		
32.31	51	5.84	0.001724	21.50	7613	8096	209	0.58			1.00	1.05	23.18	2.87	14,453,726		
40.00	51	5.84	0.001724	21.50	7960	8026	29	0.00	3.00		1.00	1.05	25.73	2.87	53,386,898		
50.00	51	5.84	0.001724	21.50	6745	7935	516	5.57			1.00	1.05	28.43	2.87	76,695,643		
54.93	51	5.84	0.001724	21.50	6930	7890	416	3.69		3.00	1.00	1.05	29.60	2.87	39,369,662		
60.00	51	5.84	0.001724	21.50	7365	7844	207	0.55			1.00	1.05	23.16	2.87	31,691,726		
63.01	51	5.84	0.001724	21.50	7458	7816	155	0.00			1.00	1.05	22.58	2.87	18,343,384		
66.37	51	5.84	0.001724	21.50	6840	7786	410	3.58	3.00		1.00	1.07	30.05	2.87	27,237,987		
70.00	51	5.84	0.001724	21.50	7326	7753	185	0.28			1.22	1.07	28.43	2.87	27,846,720		
72.71	51	5.84	0.001724	21.50	6946	7728	339	2.40			1.10	1.07	28.14	2.87	20,572,879		
77.36	51	5.84	0.001724	21.50	7482	7686	88	0.00			1.20	1.07	27.61	2.87	34,637,363		
80.00	51	5.84	0.001724	21.50	6946	7662	310	1.96	0.30		1.00	1.07	25.43	2.87	18,115,372		
85.79	51	5.84	0.001724	21.50	6740	7609	377	3.01			1.00	1.07	26.23	2.87	40,984,244		
87.95	51	5.84	0.001724	21.50	6672	7589	397	3.37		9.00	1.00	1.07	36.24	2.87	21,111,314		
90.00	51	5.84	0.001724	21.50	6750	7571	356	2.67			1.00	1.07	25.86	2.87	14,307,989		
97.18	51	5.84	0.001724	21.50	6871	7505	275	1.45			1.00	1.07	24.56	2.87	47,585,360		
98.30	51	5.84	0.001724	21.50	6600	7495	388	3.20			1.00	1.07	26.43	2.87	7,989,252		
100.00	51	5.84	0.001724	21.50	6496	7480	426	3.87	9.00		1.00	1.07	36.78	2.87	16,862,318		
110.00	51	5.84	0.001724	21.50	6090	7389	563	6.55	9.00		1.00	1.07	39.64	2.87	106,901,510		
120.00	51	5.84	0.001724	21.50	5525	7298	768	11.45	9.00		1.10	1.07	49.38	2.87	133,122,209		
122.22	51		0.001724	21.50	5543	7277	751	11.02	9.00		1.10	1.07	48.87	2.87	29,247,434		
		H	lydropower	Station, h	ead (ft) =	1734							3 River Cr	ossings	4,500,000		
													Cost of Di	5	070 595 979	44 400	

Total Cost of Pipeline = 970,585,878 44,409,791

PUMP STATION(S)

		Off	On									
	Avg.	Peak	Peak	Flow	Total Lift		Power				Annual	ized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.012	0.035	0.225	82.85	2350	0.85	19,380				15,392	2,298
Capital Costs									55,0	000,000	2,516	6,561
O&M Costs											550	0,000
								Total Cost of Pump Station(s) =	55,0	000,000	18,458	3,859

HYDROPOWER STATION

		Off	On							
	Avg.	Peak	Peak	Flow	Head		Power			Annualized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost (\$)	Costs (\$)
Energy Cost	0.090	0.035	0.225	82.85	1734	0.82	9,970			-10,188,990
Capital Costs									6,800,00	311,138
O&M Costs										68,000
								Total Cost of Hydrostation =	6,800,00	-9,809,852

			Annua	ized
Item	Cost	(\$)	Costs	(\$)
Total Construction Cost	1,032,38	85,878		
15% Design & Administration	154,85	57,882	7,08	5,624
10% Contingency	103,23	38,588	4,72	3,749
TOTAL PROJECT COST	1,290,48	82,347	64,86	8,171
UNIT WATER COST, FULL USE (\$/af)				1,081
YEARLY OPERATING COST (Energy+O&M)			5,82	1,307

Alternative 15 - Alignment D, Flaming Gorge Reservoir to Weber River, Rockport Lake (one pump station)

PROJECT DATA					
Design Flow (Q) =	60,000 a	ıf/yr =	82.85	cfs	
Manning's Roughness Coefficient (n) =	0.011				
Pipe Diameter (D) =	51 ir	nches Interest	Rate =	3.90%	
Area (A) =	14.1863 ft	:^2 F	Period =	50	yrs.
Wetted Perimeter (Wp)	13.3518 ft	t			
Velocity (V) =	5.84049 ft	/sec Base Pipe	Cost =	\$21.50	/lf/in
Energy Gradient (S) =	0.00172	Right-of-Way	Cost =	\$1,250	/acre

PIPELINE

				Base				Add for		Add for			Unit			
	Pipe			Pipe			Avg.	High	Add for	Ground			Pipeline	R/W		
Station	Diam.	Velocity	HGL	Cost	Ground	HGL	Press.	Press.	Rock	water	Slope	Appurt.	Cost	Cost	Reach Cost	Annualized
(miles)	(in.)	(ft/sec)	Slope	(\$/ft/in)	Elev.	Elev.	(psi)	(\$/ft/in)	(\$/ft/in)	(\$/ft/in)	Factor	Factor	(\$/ft/in)	(\$/lf)	(\$)	Costs (\$
			g Gorge Re			6040										
			Gorge Pu			2350					Righ	t-of-Way V	Vidth (ft) =	100		
0.00	51	5.84	0.001724	21.50	6040	8390	1018	18.85			1.00	1.05	42.37	2.87	0	
9.94	51	5.84	0.001724	21.50	7200	8300	476	4.80			1.00	1.05	27.62	11.48	74,525,752	
20.00	51	5.84	0.001724	21.50	7205	8208	435	4.02			1.00	1.05	26.80	2.87	72,749,968	
30.00	51		0.001724	21.50		8117	229	0.83			1.00	1.05	23.45	2.87	63,288,035	
32.31	51		0.001724	21.50	7613	8096	209	0.58			1.00	1.05	23.18	2.87	14,453,726	
40.00	51		0.001724	21.50	7960	8026	29	0.00	3.00		1.00	1.05	25.73	2.87	53,386,898	
50.00	51	5.84	0.001724	21.50	6745	7935	516	5.57			1.00	1.05	28.43	2.87	76,695,643	
54.93	51	5.84	0.001724	21.50	6930	7890	416	3.69		3.00	1.00	1.05	29.60	2.87	39,369,662	
60.00	51	5.84	0.001724	21.50	7365	7844	207	0.55			1.00	1.05	23.16	2.87	31,691,726	
63.01	51	5.84	0.001724	21.50	7458	7816	155	0.00			1.00	1.05	22.58	2.87	18,343,384	
66.37	51	5.84	0.001724	21.50	6840	7786	410	3.58	3.00		1.00	1.07	30.05	2.87	27,237,987	
70.00	51	5.84	0.001724	21.50	7326	7753	185	0.28			1.22	1.07	28.43	2.87	27,846,720	
72.71	51	5.84	0.001724	21.50	6946	7728	339	2.40			1.10	1.07	28.14	2.87	20,572,879	
77.36	51	5.84	0.001724	21.50	7482	7686	88	0.00			1.20	1.07	27.61	2.87	34,637,363	
80.00	51	5.84	0.001724	21.50	6946	7662	310	1.96	9.00		1.00	1.07	34.74	2.87	24,733,132	
85.79	51	5.84	0.001724	21.50	6740	7609	377	3.01			1.00	1.07	26.23	2.87	40,984,244	
87.95	51	5.84	0.001724	21.50	6672	7589	397	3.37		9.00	1.00	1.07	36.24	2.87	21,111,314	
90.00	51	5.84	0.001724	21.50	6750	7571	356	2.67			1.00	1.07	25.86	2.87	14,307,989	
97.18	51	5.84	0.001724	21.50	6871	7505	275	1.45			1.00	1.07	24.56	2.87	47,585,360	
98.30	51	5.84	0.001724	21.50	6600	7495	388	3.20			1.00	1.07	26.43	2.87	7,989,252	
100.00	51	5.84	0.001724	21.50	6496	7480	426	3.87	9.00		1.00	1.07	36.78	2.87	16,862,318	
110.00	51	5.84	0.001724	21.50	6090	7389	563	6.55	9.00		1.00	1.07	39.64	2.87	106,901,510	
120.00	51	5.84	0.001724	21.50	5525	7298	768	11.45	9.00		1.10	1.07	49.38	2.87	133,122,209	
122.22	51	5.84	0.001724	21.50	5543	7277	751	11.02	9.00		1.10	1.07	48.87	2.87	29,247,434	
130.00	51	5.84	0.001724	21.50	5730	7207	640	8.27			1.00	1.07	31.85	2.87	66,845,342	
135.42	51	5.84	0.001724	21.50	6037	7157	485	4.98			1.00	1.07	28.33	2.87	41,429,153	
		F	lydropower	Station, h	ead (ft) =	1120							4 River Cr	ossings	6,000,000	
				,	. /	-						Total	Cost of Pip		1,111,919,001	50,876,58

PUMP STATION

		Off	On									
	Avg.	Peak	Peak	Flow	Total Lift		Power				Annual	ized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.012	0.035	0.225	82.85	2350	0.85	19,380				15,392	2,298
Capital Costs									31,	000,000	1,418	8,425
O&M Costs											310	0,000
								Total Cost of Pump Station(s) =	31,	000,000	17,120),723

HYDROPOWER STATION

		Off	On									
	Avg.	Peak	Peak	Flow	Head		Power				Annual	ized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.090	0.035	0.225	82.85	1120	0.82	6,439				-6,581	1,154
Capital Costs									6,	800,000	311	1,138
O&M Costs											68	3,000
								Total Cost of Hydrostation =	6,	800,000	-6,202	2,016

PROJECT SUMMARY

			Annuali	zed
Item	Cost	(\$)	Costs	(\$)
Total Construction Cost	1,149,7	719,001		
15% Design & Administration	172,4	457,850	7,890	,922
10% Contingency	114,9	971,900	5,260	,614
TOTAL PROJECT COST	1,437,1	148,752	74,946	,824
UNIT WATER COST, FULL USE (\$/af)			1	,249
YEARLY OPERATING COST (Energy+O&M)			9,189	,143

YEARLY OPERATING COST (Energy+O&M)

Alternative 16 - Alignment D, Flaming Gorge Reservoir to Weber River, Rockport Lake (two pump stations)

PROJECT DATA			
Design Flow (Q) =	60,000 af/	/yr = 82.8	5 cfs
Manning's Roughness Coefficient (n) =	0.011		
Pipe Diameter (D) =	51 ind	ches Interest Rate	= 3.90%
Area (A) =	14.1863 ft^	2 Period	= <u>50</u> yrs.
Wetted Perimeter (Wp)	13.3518 ft		
Velocity (V) =	5.84049 ft/s	sec Base Pipe Cost	= \$21.50 /lf/in
Energy Gradient (S) =	0.00172	Right-of-Way Cost	= \$1,250 /acre

PIPELINE

st = \$1,250 /acre \$2000/acre in roadless areas

PIPELINE																
				Base				Add for		Add for			Unit			
	Pipe			Pipe			Avg.	High	Add for	Ground			Pipeline	R/W		Annualized
Station	Diam.	Velocity	HGL	Cost	Ground	HGL	Press.	Press.	Rock	water	Slope	Appurt.	Cost	Cost	Reach Cost	Costs
(miles)	(in.)	(ft/sec)	Slope	(\$/ft/in)	Elev.	Elev.	(psi)	(\$/ft/in)	(\$/ft/in)	(\$/ft/in)	Factor	Factor	(\$/ft/in)	(\$/lf)	(\$)	(\$)
		Flamin	g Gorge Re	eservoir El	evation =	6040										
		Flaming	g Gorge Pu	mp Station	i, lift (ft) =	1400					Right	t-of-Way V	Vidth (ft) =	100		
0.00	51	5.84	0.001724	21.50	6040	7440	607	7.51			1.00	1.05	30.46	2.87	0	
9.94	51	5.84	0.001724	21.50	7200	7350	65	0.00			1.00	1.05	22.58	11.48	61,027,727	
20.00	51	5.84	0.001724	21.50	7205	7258	23	0.00			1.00	1.05	22.58	2.87	61,307,124	
			Second Pu	mp Station	i, lift (ft) =	950										
20.00	51	5.84	0.001724	21.50	7205	8208	435	4.02			1.00	1.05	26.80	2.87	0	
30.00	51	5.84	0.001724	21.50	7588	8117	229	0.83			1.00	1.05	23.45	2.87	63,288,035	
32.31	51	5.84	0.001724	21.50	7613	8096	209	0.58			1.00	1.05	23.18	2.87	14,453,726	
40.00	51	5.84	0.001724	21.50	7960	8026	29	0.00	3.00		1.00	1.05	25.73	2.87	53,386,898	
50.00	51	5.84	0.001724	21.50	6745	7935	516	5.57			1.00	1.05	28.43	2.87	76,695,643	
54.93	51	5.84	0.001724	21.50	6930	7890	416	3.69		3.00	1.00	1.05	29.60	2.87	39,369,662	
60.00	51	5.84	0.001724	21.50	7365	7844	207	0.55			1.00	1.05	23.16	2.87	31,691,726	
63.01	51	5.84	0.001724	21.50	7458	7816	155	0.00			1.00	1.05	22.58	2.87	18,343,384	
66.37	51	5.84	0.001724	21.50	6840	7786	410	3.58	3.00		1.00	1.07	30.05	2.87	27,237,987	
70.00	51	5.84	0.001724	21.50	7326	7753	185	0.28			1.22	1.07	28.43	2.87	27,846,720	
72.71	51		0.001724	21.50	6946	7728	339	2.40			1.10	1.07	28.14	2.87	20,572,879	
77.36	51		0.001724	21.50	7482	7686	88	0.00			1.20	1.07	27.61	2.87	34,637,363	
80.00	51	5.84	0.001724	21.50	6946	7662	310	1.96	9.00		1.00	1.07	34.74	2.87	24,733,132	
85.79	51	5.84		21.50	6740	7609	377	3.01			1.00	1.07	26.23	2.87	40,984,244	
87.95	51	5.84	0.001724	21.50	6672	7589	397	3.37		9.00	1.00	1.07	36.24	2.87	21,111,314	
90.00	51	5.84	0.001724	21.50	6750	7571	356	2.67			1.00	1.07	25.86	2.87	14,307,989	
97.18	51	5.84	0.001724	21.50	6871	7505	275	1.45			1.00	1.07	24.56	2.87	47,585,360	
98.30	51	5.84	0.001724	21.50	6600	7495	388	3.20			1.00	1.07	26.43	2.87	7,989,252	
100.00	51	5.84	0.001724	21.50	6496	7480	426	3.87	9.00		1.00	1.07	36.78	2.87	16,862,318	
110.00	51	5.84	0.001724	21.50	6090	7389	563	6.55	9.00		1.00	1.07	39.64	2.87	106,901,510	
120.00	51	5.84	0.001724	21.50	5525	7298	768	11.45	9.00		1.10	1.07	49.38	2.87	133,122,209	
122.22	51	5.84	0.001724	21.50	5543	7277	751	11.02	9.00		1.10	1.07	48.87	2.87	29,247,434	
130.00	51	5.84	0.001724	21.50	5730	7207	640	8.27			1.00	1.07	31.85	2.87	66,845,342	
135.42	51	5.84	0.001724	21.50	6037	7157	485	4.98			1.00	1.07	28.33	2.87	41,429,153	
		ŀ	Hydropowei	Station, h	ead (ft) =	1120							4 River Cr	rossings	6,000,000	
												Total	Cost of Pir	alina =	1 086 978 133	40 725 205

Total Cost of Pipeline = 1,086,978,133 49,735,395

PUMP STATION(S)

		Off									Annualized
	Avg.	Peak	On Peak	Flow	Total Lift		Power				Costs
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	(\$)
Energy Cost	0.012	0.035	0.225	82.85	2350	0.85	19,380				15,392,298
Capital Costs									55,0	00,000	2,516,561
O&M Costs											550,000
								Total Cost of Pump Station(s) =	55,0	00,000	18,458,859

HYDROPOWER STATION

		Off									Annualized
	Avg.	Peak	On Peak	Flow	Head		Power				Costs
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	(\$)
Energy Cost	0.090	0.035	0.225	82.85	1120	0.82	6,439				-6,581,154
Capital Costs									6,80	0,000	311,138
O&M Costs											68,000
								Total Cost of Hydrostation =	6,80	0,000	-6,202,016

PROJECT SUMMARY

			Annualized Costs
Item	Cost	(\$)	(\$)
Total Construction Cost	1,148,77	8,133	
15% Design & Administration	172,31	6,720	7,884,464
10% Contingency	114,87	7,813	5,256,309
TOTAL PROJECT COST	1,435,97	2,666	75,133,012
UNIT WATER COST, FULL USE (\$/af)	l.		1,252

UNIT WATER COST, FULL USE (\$/af) 1,252 YEARLY OPERATING COST (Energy+O&M) 9,429,143

Alternative 17 - Alignment C-E, Flaming Gorge Reservoir to Weber River, above the Provo Diversion (two pump stations)

PROJECT DATA

Design Flow (Q) =	60,000	af/yr	= 82.85	cfs		
Manning's Roughness Coefficient (n) =	0.011					
Pipe Diameter (D) =	51	inches	Interest Rate =	3.90%		
Area (A) =	14.1863	ft^2	Period =	50	yrs.	
Wetted Perimeter (Wp)	13.3518	ft				
Velocity (V) =	5.84049	ft/sec	Base Pipe Cost =	\$21.50	/lf/in	
Energy Gradient (S) =	0.00172		Right-of-Way Cost =	\$1,250	/acre	
				\$2000/aci	re in roadle	ess

PIPELINE Unit Base Add for Add for Pipe Pipe Avg. High Add for Ground Pipeline R/W Annualized HGL HGL Reach Cost Station Diam. Velocity Cost Ground Press. Press. Rock water Slope Appurt. Cost Cost Costs (ft/sec) Slope (\$/ft/in) Elev. Elev. (\$/ft/in) (\$/ft/in) (\$/ft/in) Factor (\$/ft/in) (\$/lf) (miles) (in.) (psi) Factor (\$) (\$) Flaming Gorge Reservoir Elevation = 6040 Flaming Gorge Pump Station, lift (ft) = 1400 Right-of-Way Width (ft) = 100 0.00 51 5.84 0.001724 21.50 6040 7440 607 7.51 1.00 1.05 30.46 11.48 0 10.00 51 5.84 0.001724 21.50 6460 7349 3.16 1.00 1.05 25.89 11.48 70,327,789 385 20.00 51 5.84 0.001724 21.50 7258 287 1.63 1.00 1.05 11.48 65,992,927 6595 24.28 5.84 0.001724 30.00 51 21.50 6860 7167 133 0.00 1.00 1.05 22.58 11.48 61,396,104 36.41 51 5.84 0.001724 21.50 6590 7109 225 0.77 1.00 1.05 23.39 11.48 40,754,027 43.99 5.84 0.001724 21.50 6930 7040 0.00 3.00 47 1.00 1.05 25.73 11.48 52,967,845 51 Second Pump Station, lift (ft) = 730 43.99 51 5 84 0 001724 364 2 80 3.00 1.00 1.05 28 67 2 87 6930 7770 0 21 50 7450 36,625,827 50.00 51 5.84 0.001724 21.50 7715 115 0.00 1.00 1.05 22.58 2.87 3.00 55.43 51 5 84 0 001724 21 50 6840 7665 358 2.70 1.00 1.07 29.11 2 87 42.643.675 60.00 51 5.84 0.001724 21.50 7100 7624 227 0.80 1.00 1.07 23.86 2.87 29,434,657 61.77 51 5.84 0.001724 21.50 6946 7608 287 1.62 1.22 1.07 30.18 2.87 14,410,628 66.40 51 5.84 0.001724 21.50 7482 7566 36 0.00 9.00 1.10 1.07 35.90 2.87 44,827,195 69.00 51 5.84 0.001724 21.50 6946 7542 258 1.22 1.00 1.07 24.31 2.87 17,057,676 51 21.50 2.42 71.00 5.84 0.001724 6740 7524 340 1.00 1.07 25.59 2.87 13,811,574 75.40 51 5.84 0.001724 21.50 6845 7484 277 1.48 1.20 1.07 29.50 2.87 35,019,507 76.60 51 5.84 0.001724 21.50 6870 7473 1.26 9.00 1.00 1.07 33.98 11.48 11.053.166 261 79 80 5 84 0 001724 21 50 6900 7444 236 0.91 1.00 1 07 23.98 2 87 20 713 592 51 9.00 5.84 0.001724 7434 2.87 80.80 51 21.50 7075 156 0.00 1.20 1.07 39.16 10.560.695 5.84 0.001724 21.50 23.596.496 83.00 51 6975 7414 190 0.35 9.00 1.20 1.07 39.61 11.48 86.20 51 5.84 0.001724 21.50 7100 7385 124 0.00 9.00 1.20 1.07 39.16 2.87 33,794,224 91.00 51 5.84 0.001724 21.50 7330 7342 5 0.00 1.00 1.07 23.01 2.87 29,807,702 92.50 51 5.84 0.001724 21.50 7145 7328 79 0.00 9.00 1.20 1.07 39.16 2.87 15,841,042 102.00 51 5.84 0.001724 21.50 6960 7242 122 0.00 9.00 1.00 1.07 32.64 2.87 83,629,491 104.00 5.84 0.001724 21.50 6345 7223 3.08 1.00 26.30 14,195,458 51 381 1.07 2.87 106.00 51 5.84 0.001724 21.50 6145 7205 459 4.48 1.00 1.07 27.80 2.87 15,001,060 107.70 5.84 0.001724 21.50 7190 5.57 1.00 28.96 13,285,130 51 6000 515 1.07 2.87 111.70 51 5.84 0.001724 21.50 5800 7153 586 7.06 1.00 1.07 30.56 2.87 32,976,399 118.00 5.84 0.001724 21.50 5600 7096 8.46 32.06 11.48 54,768,874 51 648 1.00 1.07 3 River Crossings 4,500,000 Hydropower Station, head (ft) = 1496

Total Cost of Pipeline = 888,992,761 40,676,445

PUMP STATION(S)

		Off									Annualized
	Avg.	Peak	On Peak	Flow	Total Lift		Power				Costs
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	(\$)
Energy Cost	0.012	0.035	0.225	82.85	2130	0.85	17,566				13,951,317
Capital Costs									30,50	0,000	1,395,547
O&M Costs											305,000
								Total Cost of Pump Station(s) =	20 50	0 000	15 651 964

Total Cost of Pump Station(s) = 30,500,000 15,651,864

HYDROPOWER STATION

		Off									Annualized
	Avg.	Peak	On Peak	Flow	Head		Power				Costs
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	(\$)
Energy Cost	0.090	0.035	0.225	82.85	1496	0.82	8,598				-8,787,426
Capital Costs									6,800	0,000	311,138
O&M Costs											68,000
Total Cost of Hydrostation =					6,800	,000	-8,408,288				

PROJECT S	SUMMARY
-----------	---------

		Annualize	d
		Costs	
Item	Cost ((\$) (\$)	
Total Construction Cost	926,292,7	/61	
15% Design & Administration	138,943,9	914 6,357,4	0
10% Contingency	92,629,2	4,238,3	3
TOTAL PROJECT COST	1,157,865,9	951 58,515,8	4
UNIT WATER COST, FULL USE (\$/af)		9	5
YEARLY OPERATING COST (Energy+O&M)		5,536,8	0

Alternative 18 - Alignment D-E, Flaming Gorge Reservoir to Weber River, above Provo Diversion (two pump stations)

PROJECT DATA

Design Flow (Q) =	60,000	af/yr	= 82.85	cfs	
Manning's Roughness Coefficient (n) =	0.011				
Pipe Diameter (D) =	51	inches	Interest Rate =	3.90%	
Area (A) =	14.1863	ft^2	Period =	50	yrs.
Wetted Perimeter (Wp)	13.3518	ft			
Velocity (V) =	5.84049	ft/sec	Base Pipe Cost =	\$21.50	/lf/in
Energy Gradient (S) =	0.00172		Right-of-Way Cost =	\$1,250	/acre
				\$2000/acr	e in roadle

PIPELINE

				Base				Add for		Add for			Unit	D 444			
.	Pipe			Pipe			Avg.	High	Add for	Ground			Pipeline	R/W			
Station (miles)	Diam.	Velocity (ft/sec)	HGL Slope	Cost (\$/ft/in)	Ground Elev.	HGL Elev.	Press. (psi)	Press. (\$/ft/in)	Rock (\$/ft/in)	water (\$/ft/in)	Slope Factor	Appurt. Factor	Cost (\$/ft/in)	Cost (\$/lf)	Reach Cost	Annualiz Costs	
(miles)	(in.)	· /					(psi)	(\$/10/11)	(ə/ɪu/in)	(\$/IUIII)	Factor	Factor	(\$/10/11)	(ə/11)	(\$)	Costs	(\$)
			g Gorge Re			6040					D:		A/:	400			
0.00	54		Gorge Pu			1400	007	7 54					Width (ft) =	100	0		
0.00	51		0.001724	21.50	6040	7440	607	7.51			1.00	1.05	30.46	2.87	0		
9.94	51		0.001724	21.50	7200	7350	65	0.00			1.00	1.05	22.58	11.48	61,027,727		
20.00	51		0.001724	21.50	7205	7258	23	0.00			1.00	1.05	22.58	2.87	61,307,124		
			Second Pu			900					1.00			-			
20.00	51		0.001724	21.50	7205	8158	413	3.64			1.00	1.05	26.39	2.87	0		
30.00	51		0.001724	21.50	7588	8067	208	0.55			1.00	1.05	23.16	2.87	62,509,609		
32.31	51		0.001724	21.50	7613	8046	188	0.31			1.00	1.05	22.90	2.87	14,280,964		
40.00	51		0.001724	21.50	7960	7976	7	0.00	3.00		1.00	1.05	25.73	2.87	53,386,898		
50.00	51		0.001724	21.50	6745	7885	494	5.14			1.00	1.05	27.97	2.87	75,478,690		
54.93	51		0.001724	21.50	6930	7840	394	3.31		3.00	1.00	1.05	29.20	2.87	38,844,896		
60.00	51	5.84	0.001724	21.50	7365	7794	186	0.29			1.00	1.05	22.88	2.87	31,313,911		
63.01	51	5.84	0.001724	21.50	7458	7766	134	0.00			1.00	1.05	22.58	2.87	18,343,384		
66.37	51	5.84	0.001724	21.50	6840	7736	388	3.21	3.00		1.00	1.07	29.65	2.87	26,876,737		
70.00	51	5.84	0.001724	21.50	7326	7703	163	0.03			1.22	1.07	28.10	2.87	27,525,995		
72.71	51	5.84	0.001724	21.50	6946	7678	317	2.07			1.10	1.07	27.74	2.87	20,285,373		
77.40	51	5.84	0.001724	21.50	7482	7635	66	0.00	9.00		1.20	1.07	39.16	2.87	49,529,659		
80.00	51	5.84	0.001724	21.50	6946	7612	288	1.64			1.00	1.07	24.76	2.87	17,377,061		
82.00	51	5.84	0.001724	21.50	6740	7594	370	2.90			1.00	1.07	26.11	2.87	14,092,741		
86.40	51	5.84	0.001724	21.50	6845	7554	307	1.92			1.20	1.07	30.07	2.87	35,689,425		
87.60	51	5.84	0.001724	21.50	6870	7543	291	1.69		9.00	1.00	1.07	34.44	11.48	11,201,347		
90.80	51		0.001724	21.50	6900	7513	266	1.32			1.00	1.07	24.42	2.87	21,090,865		
91.80	51		0.001724	21.50	7075	7504	186	0.29	9.00		1.20	1.07	39.54	2.87	10,662,120		
94.00	51		0.001724	21.50	6975	7484	221	0.72	9.00		1.20	1.07	40.09	11.48	23,881,774		
97.20	51		0.001724	21.50	7100	7455	154	0.00	9.00		1.20	1.07	39.16	2.87	33,794,224		
102.00	51		0.001724	21.50	7330	7412	35	0.00	0.00		1.00	1.07	23.01	2.87	29,807,702		
103.50	51		0.001724	21.50	7145	7398	110	0.00	9.00		1.20	1.07	39.16	2.87	15,841,042		
113.00	51		0.001724	21.50	6960	7311	152	0.00	0.00	9.00	1.00	1.07	32.64	2.87	83,629,491		
115.00	51		0.001724	21.50	6345	7293	411	3.60		0.00	1.00	1.07	26.86	2.87	14,494,502		
117.00	51		0.001724	21.50	6145	7275	490	5.06			1.00	1.07	28.42	2.87	15,334,456		
118.70	51		0.001724	21.50	6000	7259	546	6.19			1.00	1.07	29.63	2.87	13,589,320		
122.70	51		0.001724	21.50	5800	7233	617	7.73			1.00	1.07	31.28	2.87	33,753,964		
122.70	51		0.001724	21.50	5600	7166	678	9.18			1.00	1.07	32.83	11.48	56,078,451		
129.00	51		lydropower			1566	070	9.10			1.00	1.07	1.07 32.83 11.48 3 River Crossings		4,500,000		
		Г	Tyuropower	Station, n	eau (II) =	1000						Tata	Cost of Pi		975,529,455	44,635,	001

PUMP STATION(S)

		Off	On									
	Avg.	Peak	Peak	Flow	Total Lift		Power				Annuali	ized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.012	0.035	0.225	82.85	2300	0.85	18,968				15,064	,802
Capital Costs									55,00	00,000	2,516	5,561
O&M Costs											550	0,000
								Total Cost of Pump Station(s) =	55,00	00,000	18,131	,363

HYDROPOWER STATION

		Off	On								
	Avg.	Peak	Peak	Flow	Head		Power				Annualized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs (\$)
Energy Cost	0.090	0.035	0.225	82.85	1566	0.82	9,000				-9,197,871
Capital Costs									6,8	800,000	311,138
O&M Costs											68,000
								Total Cost of Hydrostation =	6,8	800,000	-8,818,732

PROJECT SUMMARY

			Annual	lized
Item	Cost	(\$)	Costs	(\$)
Total Construction Cost	1,037,3	329,455		
15% Design & Administration	155,5	599,418	7,119	9,553
10% Contingency	103,7	732,946	4,746	6,369
TOTAL PROJECT COST	1,296,6	661,819	65,814	4,541
UNIT WATER COST, FULL USE (\$/af)				1,097

UNIT WATER COST, FULL USE (\$/af) YEARLY OPERATING COST (Energy+O&M) 6,484,931

Alternative 19 - Alignment C-F, Flaming Gorge Reservoir to Weber River, above the Provo Diversion (two pump stations)

PROJECT DATA

Design Flow (Q) =	60,000 af/yr	= 82.85	cfs
Manning's Roughness Coefficient (n) =	0.011		
Pipe Diameter (D) =	51 inches	s Interest Rate =	3.90%
Area (A) =	14.1863 ft^2	Period =	50 yrs.
Wetted Perimeter (Wp)	13.3518 ft		
Velocity (V) =	5.84049 ft/sec	Base Pipe Cost =	\$21.50 /lf/in
Energy Gradient (S) =	0.00172	Right-of-Way Cost =	\$1,250 /acre
			\$2000/acre in roadl

PIPELINE																	
				Base				Add for		Add for			Unit				
	Pipe			Pipe			Avg.	High	Add for	Ground			Pipeline	R/W			
Station	Diam.	Velocity	HGL	Cost	Ground	HGL	Press.	Press.	Rock	water	Slope	Appurt.	Cost	Cost	Reach Cost	Annual	ized
(miles)	(in.)	(ft/sec)	Slope	(\$/ft/in)	Elev.	Elev.	(psi)	(\$/ft/in)	(\$/ft/in)	(\$/ft/in)	Factor	Factor	(\$/ft/in)	(\$/lf)	(\$)	Costs	(\$)
		Flamin	g Gorge Re	eservoir El	evation =	6040											
			Gorge Pur			1400					Righ		Width (ft) =	100			
0.00	51		0.001724	21.50		7440	607	7.51			1.00	1.05	30.46	11.48	0		
10.00	51		0.001724	21.50		7349	385	3.16			1.00	1.05	25.89	11.48	70,327,789		
20.00	51		0.001724	21.50		7258	287	1.63			1.00	1.05	24.28	11.48	65,992,927		
30.00	51		0.001724	21.50		7167	133	0.00			1.00	1.05	22.58	11.48	61,396,104		
36.41	51		0.001724	21.50		7109	225	0.77			1.00	1.05	23.39	11.48	40,754,027		
43.99	51		0.001724	21.50		7040	47	0.00		3.00	1.00	1.05	25.73	11.48	52,967,845		
			Second Pur			730											
43.99	51		0.001724	21.50		7770	364	2.80		3.00	1.00	1.05	28.67	2.87	0		
50.00	51		0.001724	21.50		7715	115	0.00			1.00	1.05	22.58	2.87	36,625,827		
55.43	51		0.001724	21.50		7665	358	2.70	3.00		1.00	1.07	29.11	2.87	42,643,675		
60.00	51		0.001724	21.50		7624	227	0.80			1.00	1.07	23.86	2.87	29,434,657		
61.77	51		0.001724	21.50		7608	287	1.62			1.22	1.07	30.18	2.87	14,410,628		
66.40	51		0.001724	21.50		7566	36	0.00	9.00		1.10	1.07	35.90	2.87	44,827,195		
69.00	51		0.001724	21.50		7542	258	1.22			1.00	1.07	24.31	2.87	17,057,676		
71.00	51		0.001724	21.50		7524	340	2.42			1.00	1.07	25.59	2.87	13,811,574		
75.40	51		0.001724	21.50		7484	277	1.48			1.20	1.07	29.50	2.87	35,019,507		
76.60	51		0.001724	21.50		7473	261	1.26		9.00	1.00	1.07	33.98	11.48	11,053,166		
79.80	51		0.001724	21.50		7444	236	0.91			1.00	1.07	23.98	2.87	20,713,592		
80.80	51		0.001724	21.50		7434	156	0.00	9.00		1.20	1.07	39.16	2.87	10,560,695		
83.00	51		0.001724	21.50		7414	190	0.35	9.00		1.20	1.07	39.61	11.48	23,596,496		
86.20	51		0.001724	21.50		7385	124	0.00	9.00		1.20	1.07	39.16	2.87	33,794,224		
91.00	51		0.001724	21.50		7342	5	0.00			1.00	1.07	23.01	2.87	29,807,702		
92.50	51		0.001724	21.50		7328	79	0.00	9.00		1.20	1.07	39.16	2.87	15,841,042		
102.00	51		0.001724	21.50		7242	122	0.00		9.00	1.00	1.07	32.64	2.87	83,629,491		
104.00	51		0.001724	21.50		7223	381	3.08			1.00	1.07	26.30	2.87	14,195,458		
106.00	51		0.001724	21.50		7205	459	4.48			1.00	1.07	27.80	2.87	15,001,060		
107.70	51		0.001724	21.50		7190	515	5.57			1.00	1.07	28.96	2.87	13,285,130		
111.70	51		0.001724	21.50		7153	586	7.06			1.00	1.07	30.56	2.87	32,976,399		
112.00	51		0.001724	21.50		7150	282	1.55	9.00		1.20	1.07	41.15	2.87	3,328,805		
131.00	51		0.001724	21.50		6978	211	0.60	9.00		1.20	1.07	39.93	2.87	204,602,904		
		H	lydropower	Station, h	ead (ft) =	488							3 River Cr		4,500,000	47.00	

Total Cost of Pipeline = 1,042,155,595 47,684,511

PUMP STATION(S)

		Off										
	Avg.	Peak	On Peak	Flow	Total Lift		Power				Annual	ized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.012	0.035	0.225	82.85	2130	0.85	17,566				13,95	51,317
Capital Costs									52,5	500,000	2,40	2,172
O&M Costs											52	5,000
								Total Cost of Pump Station(s) =	52,5	500,000	16,87	8,488

HYDROPOWER STATION

		Off										
	Avg.	Peak	On Peak	Flow	Head		Power				Annuali	ized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.090	0.035	0.225	82.85	488	0.82	2,802				-2,864	4,001
Capital Costs									6,8	00,000	311	1,138
O&M Costs											68	8,000
								Total Cost of Hydrostation =	6,8	00,000	-2,484	4,863

PROJECT SUMMARY

			Annual	ized
Item	Cost	(\$)	Costs	(\$)
Total Construction Cost	1,101,4	155,595		
15% Design & Administration	165,2	218,339	7,55	9,673
10% Contingency	110,1	45,560	5,03	9,782
TOTAL PROJECT COST	1,376,8	319,494	74,67	7,591
UNIT WATER COST, FULL USE (\$/af)				1,245
YEARLY OPERATING COST (Energy+O&M)			11,68	0,315

48

Alternative 20 - Alignment D-F, Flaming Gorge Reservoir to Weber River, above Provo Diversion (two pump stations)

PROJECT DATA

Design Flow (Q) =	60,000	af/yr	= 82.85	cfs	
Manning's Roughness Coefficient (n) =	0.011				
Pipe Diameter (D) =	51	inches	s Interest Rate =	3.90%	
Area (A) =	14.1863	ft^2	Period =	50	yrs.
Wetted Perimeter (Wp)	13.3518	ft			
Velocity (V) =	5.84049	ft/sec	Base Pipe Cost =	\$21.50	/lf/in
Energy Gradient (S) =	0.00172		Right-of-Way Cost =	\$1,250	/acre
				\$2000/acr	e in roadl

PIPELINE

	Pipe			Base Pipe			Avg.	Add for High	Add for	Add for Ground			Unit Pipeline	R/W		Annualized
Station	Diam.	Velocity	HGL	Cost	Ground	HGL	Press.	Press.	Rock	water	Slope	Appurt.	Cost	Cost	Reach Cost	Costs
(miles)	(in.)	(ft/sec)	Slope	(\$/ft/in)	Elev.	Elev.	(psi)	(\$/ft/in)	(\$/ft/in)	(\$/ft/in)	Factor	Factor	(\$/ft/in)	(\$/lf)	(\$)	(\$)
. ,		Flamin	g Gorge Re	eservoir El	evation =	6040			, ,				,		,	
		Flamino	g Gorge Pu	mp Station	, lift (ft) =	1400					Rig	ht-of-Way	Width (ft) =	100		
0.00	51		0.001724	21.50	6040	7440	607	7.51			1.00		30.46	2.87	0	
9.94	51	5.84	0.001724	21.50	7200	7350	65	0.00			1.00	1.05	22.58	11.48	61,027,727	
20.00	51	5.84	0.001724	21.50	7205	7258	23	0.00			1.00	1.05	22.58	2.87	61,307,124	
			Second Pu	mp Station	, lift (ft) =	900										
20.00	51	5.84	0.001724	21.50	7205	8158	413	3.64			1.00	1.05	26.39	2.87	0	
30.00	51	5.84	0.001724	21.50	7588	8067	208	0.55			1.00	1.05	23.16	2.87	62,509,609	
32.31	51	5.84	0.001724	21.50	7613	8046	188	0.31			1.00	1.05	22.90	2.87	14,280,964	
40.00	51	5.84	0.001724	21.50	7960	7976	7	0.00	3.00		1.00	1.05	25.73	2.87	53,386,898	
47.35	51	5.84	0.001724	21.50	6745	7909	504	5.35			1.00	1.05	28.19	2.87	55,905,324	
54.93	51	5.84	0.001724	21.50	6930	7840	394	3.31		3.00	1.00	1.05	29.20	2.87	59,725,013	
60.00	51	5.84	0.001724	21.50	7365	7794	186	0.29			1.00	1.05	22.88	2.87	31,313,911	
63.01	51	5.84	0.001724	21.50	7458	7766	134	0.00			1.00	1.05	22.58	2.87	18,343,384	
66.37	51	5.84	0.001724	21.50	6840	7736	388	3.21	3.00		1.00	1.07	29.65	2.87	26,876,737	
70.00	51	5.84	0.001724	21.50	7326	7703	163	0.03			1.22	1.07	28.10	2.87	27,525,995	
72.71	51	5.84	0.001724	21.50	6946	7678	317	2.07			1.10	1.07	27.74	2.87	20,285,373	
77.40	51	5.84	0.001724	21.50	7482	7635	66	0.00	9.00		1.20	1.07	39.16	2.87	49,529,659	
80.00	51	5.84	0.001724	21.50	6946	7612	288	1.64			1.00	1.07	24.76	2.87	17,377,061	
82.00	51	5.84	0.001724	21.50	6740	7594	370	2.90			1.00	1.07	26.11	2.87	14,092,741	
86.40	51	5.84	0.001724	21.50	6845	7554	307	1.92			1.20	1.07	30.07	2.87	35,689,425	
87.60		5.84	0.001724	21.50	6870	7543	291	1.69		9.00	1.00	1.07	34.44	11.48	11,201,347	
90.80	51	5.84	0.001724	21.50	6900	7513	266	1.32			1.00	1.07	24.42	2.87	21,090,865	
91.80	51	5.84	0.001724	21.50	7075	7504	186	0.29	9.00		1.20	1.07	39.54	2.87	10,662,120	
94.00		5.84	0.001724	21.50	6975	7484	221	0.72	9.00		1.20	1.07	40.09	11.48	23,881,774	
97.20	51	5.84	0.001724	21.50	7100	7455	154	0.00	9.00		1.20	1.07	39.16	2.87	33,794,224	
102.00	51	5.84	0.001724	21.50	7330	7412	35	0.00			1.00	1.07	23.01	2.87	29,807,702	
103.50		5.84	0.001724	21.50	7145	7398	110	0.00	9.00		1.20	1.07	39.16	2.87	15,841,042	
113.00	51	5.84	0.001724	21.50	6960	7311	152	0.00		9.00	1.00	1.07	32.64	2.87	83,629,491	
115.00	51	5.84	0.001724	21.50	6345	7293	411	3.60			1.00	1.07	26.86	2.87	14,494,502	
117.00	51	5.84	0.001724	21.50	6145	7275	490	5.06			1.00	1.07	28.42	2.87	15,334,456	
118.70	51	5.84	0.001724	21.50	6000	7259	546	6.19			1.00	1.07	29.63	2.87	13,589,320	
122.70	51	5.84	0.001724	21.50	5800	7223	617	7.73			1.00	1.07	31.28	2.87	33,753,964	
123.00	51	5.84	0.001724	21.50	6500	7220	312	1.99	9.00		1.20	1.07	41.72	2.87	3,374,884	
142.00	51	5.84	0.001724	21.50	6490	7047	242	0.99	9.00		1.20	1.07	40.44	2.87	207,170,208	
		F	Hydropowei	Station, h	ead (ft) =	557							3 River Cr	rossings	4,500,000	

Total Cost of Pipeline = 1,131,302,846 51,763,501

PUMP STATION(S)

		Off	On								Annualized
	Avg.	Peak	Peak	Flow	Total Lift		Power				Costs
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	(\$)
Energy Cost	0.125	0.035	0.225	82.85	2300	0.85	18,968				21,323,341
Capital Costs									62,0	00,000	2,836,851
O&M Costs											620,000
								Total Cost of Pump Station(s) =	62.0	00 000	24 780 102

Total Cost of Pump Station(s) = 62,000,000 24,780,192

HYDROPOWER STATION

		Off	On								Annualized
	Avg.	Peak	Peak	Flow	Head		Power				Costs
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	(\$)
Energy Cost	0.090	0.035	0.225	82.85	557	0.82	3,204				-3,274,446
Capital Costs									6,0	000,000	274,534
O&M Costs											60,000
								Total Cost of Hydrostation =	6,0	000,000	-2,939,912

Item	Cost	(\$)	Annualized Costs (\$)
Total Construction Cost	1,199,3	02,846	
15% Design & Administration	179,8	95,427	8,231,233
10% Contingency	119,9	30,285	5,487,489
TOTAL PROJECT COST	1,499,1	28,558	87,322,503
UNIT WATER COST, FULL USE (\$/af) YEARLY OPERATING COST (Energy+O&M)		49	1,455 18,728,895

Alternative 21 - Alignment C-G, Flaming Gorge Reservoir to Weber River, above the Provo Diversion (two pump stations)

PROJECT DATA

Design Flow (Q) =	60,000 a	af/yr	= 82.85	cfs		
Manning's Roughness Coefficient (n) =	0.011					
Pipe Diameter (D) =	51 ir	nches	Interest Rate =	3.90%		
Area (A) =	14.1863 ft	t^2	Period =	50	yrs.	
Wetted Perimeter (Wp)	13.3518 f	t				
Velocity (V) =	5.84049 ft	t/sec	Base Pipe Cost =	\$21.50	/lf/in	
Energy Gradient (S) =	0.00172		Right-of-Way Cost =	\$1,250	/acre	
				\$2000/acr	e in roadl	es

PIPELINE Add for Add for Unit Base Pipe Pipe Avg. High Add for Ground Pipeline R/W Station Diam. Velocity HGL Cost Ground HGL Press. Press. Rock water Slope Appurt. Cost Cost **Reach Cost** Annualized (\$/ft/in) (\$/ft/in) (miles) (in.) (ft/sec) Slope (\$/ft/in) Elev. Elev. (psi) (\$/ft/in) (\$/ft/in) Factor Factor (\$/lf) (\$) Costs (\$) Flaming Gorge Reservoir Elevation = 6040 Flaming Gorge Pump Station, lift (ft) = 1400 Right-of-Way Width (ft) = 100 0.00 5.84 0.001724 21.50 6040 7440 607 7.51 1.00 1.05 30.46 11 48 51 0 7349 70,327,789 10.00 51 5.84 0.001724 21.50 6460 385 3.16 1.00 1.05 25.89 11.48 20.00 51 5.84 0.001724 21.50 6595 7258 287 1.63 1.00 1.05 24.28 11.48 65,992,927 30.00 51 5.84 0.001724 21.50 6860 7167 133 0.00 1.00 1.05 22.58 11.48 61,396,104 36 41 5 84 0 001724 6590 7109 225 1 00 1 05 11 48 40 754 027 51 21 50 077 23 39 3.00 21.50 11.48 7040 47 25.73 52,967,845 43.99 51 5.84 0.001724 6930 0.00 1.00 1.05 Second Pump Station, lift (ft) = 730 43.99 51 5.84 0.001724 21.50 6930 7770 364 2.80 3.00 1.00 1.05 28.67 2.87 50.00 5.84 0.001724 21.50 7715 115 0.00 1.00 1.05 22.58 2.87 36,625,827 51 7450 55.43 5.84 0.001724 21.50 6840 7665 358 2.70 3.00 1.00 1.07 29.11 2.87 42.643.675 51 60.00 51 5.84 0.001724 21.50 7100 7624 227 0.80 1.00 1.07 23.86 2.87 29,434,657 61.77 51 5.84 0.001724 21.50 6946 7608 287 1.62 1.22 1.07 30.18 2.87 14,410,628 66.40 51 5.84 0.001724 21.50 7482 7566 36 0.00 9.00 1.10 1.07 35.90 2.87 44,827,195 258 69.00 5 84 0 001724 21 50 7542 1 22 1 00 1 07 24 31 2 87 17 057 676 51 6946 71.00 51 5.84 0.001724 21.50 6740 7524 340 2.42 1.00 1.07 25.59 2.87 13,811,574 75.40 51 5.84 0.001724 21.50 6845 7484 277 1.48 1.20 1.07 29.50 2.87 35,019,507 5.84 0.001724 6870 7473 261 1.26 9.00 1.07 11,053,166 76.60 51 21.50 1.00 33.98 11.48 79.80 5.84 0.001724 7444 21.50 6900 236 1.00 1.07 23.98 2.87 20.713.592 51 0.91 80.80 51 5 84 0 001724 21 50 7075 7434 156 0.00 9.00 1.20 1.07 39 16 2 87 10 560 695 83.00 51 5.84 0.001724 21.50 6975 7414 190 0.35 9.00 1.20 1.07 39.61 11.48 23,596,496 86.20 51 5.84 0.001724 21.50 7100 7385 124 0.00 9.00 1.20 1.07 39.16 2.87 33,794,224 91.00 5.84 0.001724 21.50 7330 7342 0.00 1.00 1.07 23.01 2.87 29,807,702 51 5 92 50 51 5 84 0 001724 21 50 7145 7328 79 0.00 9.00 1 20 1 07 39 16 2 87 15 841 042 9.00 102.00 51 5.84 0.001724 21.50 6960 7242 122 0.00 1.00 1.07 32.64 2.87 83,629,491 112.00 51 5.84 0.001724 21.50 7120 7150 13 0.00 9.00 1.20 1.07 39.16 2.87 105,606,949 115.00 51 5.84 0.001724 21.50 7120 7123 0.00 17,000,000 56,000,000 Tunnel 1 116.00 5.84 0.001724 21.50 6850 114 0.00 9.00 1.20 1.07 2.87 10.560.695 51 7114 39.16 9.00 120.00 51 5.84 0.001724 21.50 6650 7078 185 0.28 1.00 1.07 32.94 11.48 35.722.265 Hydropower Station, head (ft) = 428 3 River Crossings 4,500,000 44,229,966

Total Cost of Pipeline = 966,655,748

PUMP STATION(S)

		Off										
	Avg.	Peak	On Peak	Flow	Total Lift		Power				Annuali	zed
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.125	0.035	0.225	82.85	2130	0.85	17,566				19,747	,268
Capital Costs									52,5	500,000	2,402	.,172
O&M Costs											525	5,000
								Total Cost of Pump Station(s) =	52,	500,000	22,674	,440

HYDROPOWER STATION

		Off										
	Avg.	Peak	On Peak	Flow	Head		Power				Annual	ized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.090	0.035	0.225	82.85	428	0.82	2,458				-2,51	2,302
Capital Costs									6,80	0,000	31	1,138
O&M Costs											6	8,000
								Total Cost of Hydrostation =	6.80	0.000	-2.13	3.163

PROJECT SUMMARY

			Annual	ized
Item	Cost	(\$)	Costs	(\$)
Total Construction Cost	1,025,9	55,748		
15% Design & Administration	153,8	93,362	7,04	1,491
10% Contingency	102,5	95,575	4,69	4,328
TOTAL PROJECT COST	1,282,4	44,685	76,50	7,061
UNIT WATER COST. FULL USE (\$/af)				1.275

YEARLY OPERATING COST (Energy+O&M) 17,827,966

Alternative 22 - Alignment D-G, Flaming Gorge Reservoir to Weber River, above Provo Diversion (two pump stations)

PROJECT DATA

Design Flow (Q) =	60,000 af/yr	= 82.85	cfs
Manning's Roughness Coefficient (n) =	0.011		
Pipe Diameter (D) =	51 inche	es Interest Rate =	3.90%
Area (A) =	14.1863 ft^2	Period =	50 yrs.
Wetted Perimeter (Wp)	13.3518 ft		
Velocity (V) =	5.84049 ft/sec	Base Pipe Cost =	\$21.50 /lf/in
Energy Gradient (S) =	0.00172	Right-of-Way Cost =	\$1,250 /acre
			\$2000/acre in roadl

PIPELINE

				Base				Add for		Add for			Unit				
.	Pipe			Pipe			Avg.	High	Add for	Ground			Pipeline	R/W			
Station	Diam.	Velocity	HGL	Cost	Ground	HGL	Press.	Press.	Rock	water	Slope	Appurt.	Cost	Cost	Reach Cost	Annualiz	
(miles)	(in.)	(ft/sec)	Slope	(\$/ft/in)	Elev.	Elev.	(psi)	(\$/ft/in)	(\$/ft/in)	(\$/ft/in)	Factor	Factor	(\$/ft/in)	(\$/lf)	(\$)	Costs	(\$)
			g Gorge Re			6040											
			g Gorge Pu			1400							/Width (ft) =	100			
0.00			0.001724	21.50	6040	7440	607	7.51			1.00	1.05	30.46	2.87	0		
9.94			0.001724	21.50	7200	7350	65	0.00			1.00	1.05	22.58	11.48	61,027,727		
20.00	51		0.001724	21.50	7205	7258	23	0.00			1.00	1.05)5 22.58 2.5		61,307,124		
			Second Pu	-		950											
20.00			0.001724	21.50	7205	8208	435	4.02			1.00	1.05			0		
30.00			0.001724	21.50	7588	8117	229	0.83			1.00	1.05			63,288,035		
32.31			0.001724	21.50	7613	8096	209	0.58			1.00	1.05	23.18	2.87	14,453,726		
40.00			0.001724	21.50	7960	8026	29	0.00	3.00		1.00	1.05	25.73	2.87	53,386,898		
50.00			0.001724	21.50	6745	7935	516	5.57			1.00	1.05	28.43	2.87	76,695,643		
54.93			0.001724	21.50	6930	7890	416	3.69		3.00	1.00	1.05	29.60	2.87	39,369,662		
60.00			0.001724	21.50	7365	7844	207	0.55			1.00	1.05	23.16	2.87	31,691,726		
63.01			0.001724	21.50	7458	7816	155	0.00			1.00	1.05	22.58	2.87	18,343,384		
66.37	51	5.84	0.001724	21.50	6840	7786	410	3.58	3.00		1.00	1.07			27,237,987		
70.00		5.84	0.001724	21.50	7326	7753	185	0.28			1.22	1.07	7 28.43 2.87		27,846,720		
72.71	51	5.84	0.001724	21.50	6946	7728	339	2.40			1.10	1.07	28.14	2.87	20,572,879		
77.40		5.84	0.001724	21.50	7482	7685	88	0.00	9.00		1.20	1.07	39.16	2.87	49,529,659		
80.00	51	5.84	0.001724	21.50	6946	7662	310	1.96			1.00	1.07	25.11	2.87	17,616,155		
82.00	51	5.84	0.001724	21.50	6740	7644	391	3.27			1.00	1.07			14,302,054		
86.40	51	5.84	0.001724	21.50	6845	7604	329	2.24			1.20	1.07	30.49	2.87	36,190,229		
87.60	51	5.84	0.001724	21.50	6870	7593	313	2.01		9.00	1.00	1.07	34.78	11.48	11,312,252		
90.80	51	5.84	0.001724	21.50	6900	7563	287	1.63			1.00	1.07	24.75	2.87	21,373,817		
91.80	51	5.84	0.001724	21.50	7075	7554	208	0.56	9.00		1.20	1.07	39.88	2.87	10,753,290		
94.00	51	5.84	0.001724	21.50	6975	7534	242	1.00	9.00		1.20	1.07	40.45	11.48	24,096,623		
97.20	51	5.84	0.001724	21.50	7100	7505	176	0.17	9.00		1.20	1.07	39.38	2.87	33,982,492		
102.00	51	5.84	0.001724	21.50	7330	7462	57	0.00			1.00	1.07	23.01	2.87	29,807,702		
103.50	51	5.84	0.001724	21.50	7145	7448	131	0.00	9.00		1.20	1.07	39.16	2.87	15,841,042		
113.00	51	5.84	0.001724	21.50	6960	7361	174	0.15		9.00	1.00	1.07	32.80	2.87	84,042,567		
123.00	51	5.84	0.001724	21.50	7120	7270	65	0.00	9.00		1.20	1.07	39.16				
126.00	51	5.84	0.001724	21.50	7200	7243	19	0.00					17,000,000		56,000,000	Tunnel	
127.00	51	5.84	0.001724	21.50	6850	7234	166	0.06	9.00		1.20	1.07	39.24	2.87	10,582,821		
131.00			0.001724	21.50	6650	7198	237	0.94		9.00	1.00	1.07	33.64	11.48	36,472,380		
			lydropower			548							3 River C		4,500,000		
				, .	~ /							Tat			1 057 231 545	48 374 3	204

Total Cost of Pipeline = 1,057,231,545 48,374,321

PUMP STATION(S)

		Off									
	Avg.	Peak	On Peak	Flow	Total Lift		Power			Annualia	zed
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)	Cost	(\$)	Costs	(\$)
Energy Cost	0.125	0.035	0.225	82.85	2350	0.85	19,380			21,786	,892
Capital Costs								55,00	00,000	2,516,	,561
O&M Costs											,000,

Total Cost of Pump Station(s) = 55,000,000 24,853,453

HYDROPOWER STATION

		Off								
	Avg.	Peak	On Peak	Flow	Head		Power			Annualized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost (\$)	Costs (\$)
Energy Cost	0.090	0.035	0.225	82.85	548	0.82	3,147			-3,216,469
Capital Costs									6,800,000	311,138
O&M Costs										68,000
								Total Cost of Hydrostation =	6,800,000	-2,837,330

PROJECT SUMMARY

ltem	Cost	(\$)	Annual Costs	ized (\$)
Total Construction Cost	1,119,0	031,545		
15% Design & Administration	167,8	854,732	7,680	0,303
10% Contingency	111,9	903,155	5,120),202
TOTAL PROJECT COST	1,398,	789,432	83,190),948
UNIT WATER COST, FULL USE (\$/af)			1	1,387

YEARLY OPERATING COST (Energy+O&M)

51

Alternative 23 - Alignment C-E, Flaming Gorge Reservoir to Weber River, above Provo Diversion (one pump station)

PROJECT DATA

Design Flow (Q) =	60,000 af/yr	= 82.85	cfs
Manning's Roughness Coefficient (n) =	0.011		
Pipe Diameter (D) =	51 inches	Interest Rate =	3.90%
Area (A) =	14.1863 ft^2	Period =	50 yrs.
Wetted Perimeter (Wp)	13.3518 ft		
Velocity (V) =	5.84049 ft/sec	Base Pipe Cost =	\$21.50 /lf/in
Energy Gradient (S) =	0.00172	Right-of-Way Cost =	\$1,250 /acre

PIPELINE

				Base				Add for		Add for			Unit				
	Pipe			Pipe			Avg.	High	Add for	Ground			Pipeline	R/W			
Station	Diam.	Velocity	HGL	Cost	Ground	HGL	Press.	Press.	Rock	water	Slope	Appurt.	Cost	Cost	Reach Cost	Annuali	zed
(miles)	(in.)	(ft/sec)	Slope	(\$/ft/in)	Elev.	Elev.	(psi)	(\$/ft/in)	(\$/ft/in)	(\$/ft/in)	Factor	Factor	(\$/ft/in)	(\$/lf)	(\$)	Costs	(\$)
		Flamin	g Gorge Re	eservoir El	evation =	6040											
		Flaming	g Gorge Pu	mp Station	i, lift (ft) =	2120					Ri	ght-of-Way	/ Width (ft) =	100			
0.00	51	5.84	0.001724	21.50	6040	8160	919	15.72			1.00	1.05	39.08	11.48	0		
10.00	51	5.84	0.001724	21.50	6460	8069	697	9.64			1.00	1.05	32.70	11.48	88,655,534		
20.00	51	5.84	0.001724	21.50	6595	7978	599	7.34			1.00	1.05	30.29	11.48	82,161,157		
30.00	51	5.84	0.001724	21.50	6860	7887	445	4.21			1.00	1.05	27.00	11.48	73,306,467		
36.41	51	5.84	0.001724	21.50	6590	7829	537	6.00			1.00	1.05	28.88	11.48	50,233,664		
43.99	51	5.84	0.001724	21.50	6930	7760	359	2.73		3.00	1.00	1.05	28.59	2.87	58,480,107		
50.00	51	5.84	0.001724	21.50	7450	7705	110	0.00			1.00	1.05	22.58	2.87	36,625,827		
55.43	51	5.84	0.001724	21.50	6840	7655	353	2.63	3.00		1.00	1.07	29.03	2.87	42,534,287		
60.00	51	5.84	0.001724	21.50	7100	7614	223	0.75			1.00	1.07	23.80	2.87	29,361,232		
61.77	51	5.84	0.001724	21.50	6946	7598	282	1.56			1.22	1.07	30.10	2.87	14,371,907		
66.40	51	5.84	0.001724	21.50	7482	7556	32	0.00	3.00		1.10	1.07	28.84	2.87	36,022,531		
69.00	51	5.84	0.001724	21.50	6946	7532	254	1.16			1.00	1.07	24.24	2.87	17,013,369		
71.00	51	5.84	0.001724	21.50	6740	7514	335	2.35			1.00	1.07	25.52	2.87	13,772,413		
75.40	51	5.84	0.001724	21.50	6845	7474	272	1.41			1.20	1.07	29.42	2.87	34,926,476		
76.60	51	5.84	0.001724	21.50	6870	7463	257	1.20		9.00	1.00	1.07	33.92	11.48	11,032,606		
79.80	51	5.84	0.001724	21.50	6900	7434	231	0.86			1.00	1.07	23.92	2.87	20,661,323		
80.80	51	5.84	0.001724	21.50	7075	7424	151	0.00	3.00		1.20	1.07	31.46	2.87	8,486,162		
83.00	51	5.84	0.001724	21.50	6975	7404	186	0.29	3.00		1.20	1.07	31.84	11.48	18,993,119		
86.20	51	5.84	0.001724	21.50	7100	7375	119	0.00	3.00		1.20	1.07	31.46	2.87	27,155,718		
91.00	51	5.84	0.001724	21.50	7330	7332	1	0.00			1.00	1.07	23.01	2.87	29,807,702		
92.50	51	5.84	0.001724	21.50	7145	7318	75	0.00	3.00		1.20	1.07	31.46	2.87	12,729,243		
102.00	51	5.84	0.001724	21.50	6960	7232	118	0.00		9.00	1.00	1.07	32.64	2.87	83,629,491		
104.00	51	5.84	0.001724	21.50	6345	7213	376	3.01			1.00	1.07	26.22	2.87	14,153,738		
106.00	51	5.84	0.001724	21.50	6145	7195	455	4.40			1.00	1.07	27.71	2.87	14,954,423		
107.70	51	5.84	0.001724	21.50	6000	7180	511	5.48			1.00	1.07	28.87	2.87	13,242,511		
111.70	51	5.84	0.001724	21.50	5800	7143	582	6.97			1.00	1.07	30.46	2.87	32,867,270		
118.00	51		0.001724	21.50	5600	7086	644	8.36			1.00	1.07	31.95	11.48	54,584,844		
			lydropower	Station, h	ead (ft) =	1486							4 River Cr	ossings	6,000,000		
			, ,	,	. /							Tota	al Cost of Pip		925,763,119	42,358	.897

PUMP STATION

		Off	On									
	Avg.	Peak	Peak	Flow	Total Lift		Power				Annual	ized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.125	0.035	0.225	82.85	2120	0.85	17,483				19,654	4,558
Capital Costs									31,0	000,000	1,418	8,425
O&M Costs											310	0,000
								Total Cost of Pump Station(s) =	31,0	00,000	21,382	2,983

HYDROPOWER STATION

		Off	On									
	Avg.	Peak	Peak	Flow	Head		Power				Annual	ized
Item	(\$/kwh)	(\$/kwh)	(\$/kwh)	(cfs)	(ft)	Effic.	(kW)		Cost	(\$)	Costs	(\$)
Energy Cost	0.090	0.035	0.225	82.85	1486	0.82	8,541				-8,728	3,682
Capital Costs									5,8	300,000	265	5,383
O&M Costs											58	8,000
								Total Cost of Hydrostation =	5,8	800,000	-8,405	5,299

PROJECT SUMMARY

		Ann		ized
Item	Cost	(\$)	Costs	(\$)
Total Construction Cost	962,5	563,119		
15% Design & Administration	144,3	384,468	6,606	3,406
10% Contingency	96,2	256,312	4,404	1,270
TOTAL PROJECT COST	1,203,2	203,899	66,347	7,257
UNIT WATER COST, FULL USE (\$/af)			1	1,106

YEARLY OPERATING COST (Energy+O&M) 11,293,876